
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Extending the Capabilities of the
CEGAR Model Checking Algorithm

Master’s Thesis

Author Advisor
Zsófia Ádám Zoltán Micskei, PhD

June 6, 2023

HALLGATÓI NYILATKOZAT

Alulírott Ádám Zsófia, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-
dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.
Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2023. június 6.

Ádám Zsófia
hallgató

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 4
2.1 Verification of Critical Embedded Systems 4
2.2 Formal Verification and Model Checking . 5

2.2.1 Abstraction in Model Checking . 5
2.2.1.1 Abstract Domains . 6
2.2.1.2 ARG . 7
2.2.1.3 Traces . 7
2.2.1.4 Pruning back the ARG . 8

2.3 The Models throughout Model Checking in Practice 8

I Abstraction-based Trace Generation to Validate Semantics in For-
mal Verifiers 10

3 Validating Semantics of Verifiers 11
3.1 Formal Verification Process . 11
3.2 Problem Statement . 12
3.3 Challenges of Semantics in Model Transformation 13

3.3.1 Example of Ambiguous Semantics 13
3.4 An Approach to E2E Validation of the Verification Process 14

3.4.1 Another Use Case: Mitigating Modeling Mistakes 15

4 Abstraction-based Trace Generation Algorithm 16
4.1 Prerequisites of the Trace Generation Algorithm 16

4.1.1 Abstraction Capabilities . 16

4.2 Generating Traces without Abstraction . 17
4.2.1 Trace Generation without Abstraction Example 17

4.3 Utilizing Abstraction . 18
4.3.1 Inappropriate Abstraction Level . 19
4.3.2 Trace Generation with Abstraction Example 20

4.4 Analysis of the Proposed Algorithm . 22
4.4.1 Coverage Guarantees . 22

4.4.1.1 Coverage on the ARG level 23
4.4.1.2 Typical Coverages for Engineering Models 24

4.4.2 Usability and Feasibility for Validation 26
4.4.2.1 Examples of Tools with the Necessary Prerequisites 26

5 Evaluation 28
5.1 Prototype Implementation . 28

5.1.1 Gamma and Theta . 28
5.1.2 Process and Implementation . 28

5.1.2.1 High Level View of the Process 29
5.1.2.2 Implementing Abstraction-based Trace Generation in Theta 30
5.1.2.3 XSTS Specific Additions 30

5.2 Evaluation Design . 31
5.2.1 Research Questions . 31
5.2.2 Process and Goal of the Evaluation 31

5.2.2.1 End-to-End Validation . 31
5.2.2.2 Real-World Models . 32

5.3 Designing a Validation Modeling Suite for Gamma 32
5.3.1 Understanding Gamma Models and Traces 33

5.4 Results of the Case Studies . 33
5.4.1 RQ1: Quantitative Analysis of the Models and Traces 34
5.4.2 RQ2: Validation Findings . 34

5.4.2.1 Missing Default Values in XSTS 36
5.4.2.2 Order of Operations inbetween Stable State Configurations 37
5.4.2.3 Limitation of Parallel Executions 38
5.4.2.4 Visualizing Transitions Crossing Composite states with

Orthogonal Regions . 40
5.4.3 RQ3: Traces of Real-World Models 43

5.5 Discussion . 45

II Runtime Monitoring of Refinement Progress in CEGAR-based
Model Checking 46

6 Monitoring Refinement Progress in CEGAR 47
6.1 Hardships in Model Checking . 47
6.2 Problem Statement . 48

6.2.1 Assumptions about the CEGAR loop 48
6.2.2 Refinement Progress Issues . 49

6.3 Improved Detection and Mitigation . 50
6.3.1 Detection . 51

6.3.1.1 Analysis . 52
6.3.2 Mitigation . 53

6.3.2.1 Issues with Infeasible Traces 54

7 Comparison of Runtime Monitoring Techniques on Software Bench-
marks 56
7.1 Experiment Design . 56

7.1.1 Implementation . 56
7.1.2 Input Models . 57
7.1.3 Research Questions . 57
7.1.4 CEGAR Configurations . 57
7.1.5 Execution Environment . 58

7.2 Results . 59
7.2.1 Data Preprocessing . 59
7.2.2 RQ1 - Explicit Analysis . 59

7.2.2.1 Detection for Explicit Value Analysis 60
7.2.2.2 Mitigation for Explicit Value Analysis 60
7.2.2.3 Differences in Execution Time 61

7.2.3 RQ2 - Predicate Analysis . 62
7.2.4 RQ3 - Tracking ARGs . 63

7.3 Conclusion . 64
7.3.1 Threats to Validity . 64

III Related Work and Conclusion 67

8 Related Work 68
8.1 The Landscape of Verification Tools . 68
8.2 Test Generation with Model Checkers . 69

8.3 V&V of Model Transformations . 69
8.4 Conformance Testing of Different Tools and Compilers 69
8.5 Heuristics and Optimizations in CEGAR . 70

9 Conclusion 71
9.1 Summary of Results . 71
9.2 Future Work . 71

9.2.1 Trace Generation . 71
9.2.2 Runtime Monitoring . 72

Bibliography 73

Appendix 79

Kivonat

A biztonságkritikus beágyazott rendszerek komplexitása folyamatosan növekszik, ideértve
a szoftvereket és a mérnöki modelleket (pl. állapotgépek) is. Formális verifikációs eszközök
segítségével bizonyos tulajdonságok teljesülése bizonyítható vagy hibák is megtalálhatóak,
de ezek használata különböző kihívásokat rejt. Az ellenpélda alapú absztrakció-finomítás
(CEGAR) egy jól konfigurálható formális verifikációs módszer, amelynek kiegészítése új
technikákkal egy aktív kutatási terület.

A célom ebben a munkában a CEGAR kiterjesztése a formális verifikációs eszközök
alkalmazhatóságának javítására. Két konkrét kihívásra összpontosítottam: I) az eszközök
helyességével kapcsolatban a modelltranszformáció validálására, II) a finomítás hiányának
detektálására futásidejű monitorozással a teljesítmény javítása érdekében.

1. rész Az első részben a mérnöki modellekre és azok formális verifikációs eszközökben
való formalizálására összpontosítottam. A formális verifikációs eszközökben szükség van
a szemantika formalizálására a bemeneti modell formális reprezentációra transzformálása
során. Ez egy komplex feladat, mivel a szemantika sokszor alulspecifikált. Ezen transz-
formációk validációjára a jelenlegi gyakorlat teszt modellek készítése az adott modellezési
nyelven majd érvényes lefutások megadása (általában manuálisan), majd ezek összehason-
lítása a verifikációs eszköz által visszaadott lefutásokkal a konformancia bizonyítására. Ez
a módszer hibákra hajlamos és nem hatékony, mivel bizonyos érvényes lefutások könnyen
kihagyásra kerülhetnek.

Munkámban absztrakció-alapú modellellenőrzők absztrakció alapú technikáit kihasz-
náló automatikus lefutás generálási módszert javaslok. Egy olyan absztrakció alapú lefutás
generáló algoritmust alkottam meg, mely sokszor képes a végtelen állapotterek kezelésére.
Az absztrakciót konfigurálható módon képes alkalmazni és nem generál olyan lefutásokat,
melyek szükségtelenül ismétlik a modell már korábban lefedett állapotait.

Az algoritmust egy esettanulmány során ki is értékeltem reaktív állapotgépekhez ké-
szült eszközökön. Továbbá azt is ismertetem, az algoritmus milyen más felhasználásokra
ad lehetőséget, például modellezési hibák azonosítására.

2. rész Visszatérve a verifikációhoz, a formális verifikáció és a modellellenőrzés tipikus
kihívása a teljesítmény. Nagy bemeneti programok, például valós szoftverkomponensek,
ellenőrzése nem egyszerű, mivel nincs olyan konfiguráció, amely minden adott bemenethez
jól teljesítene. A terminálás jellemzően nem garantálható.

Korábbi munkáim során észrevettem a finomítás leállásának problémáját, amely meg-
akadályozhatja a verifikációs algoritmus sikerét. Ennek megoldása érdekében futásidejű
monitorozást javasoltam és ezt egy komplex portfólióban alkalmaztam. Jelen munkám so-
rán mélyebben elemeztem a problémát, részletezve az okait és hatásait, illetve frissítettem,
javítottam és konfigurálhatóvá tettem a monitorozási technikáimat.

A kiértékelésben a futásidejű monitorozást különböző CEGAR és monitor konfigu-
rációk alkalmazásával az SV-COMP de facto standard szoftverellenőrzési benchmarkjain
futtatom, majd az eredményeket elemzem.

i

Abstract

Safety-critical systems are becoming increasingly complex, including both software and en-
gineering models (e.g. state machines). Formal verifiers automatically prove properties or
find errors in these models, but their usage hides various challenges. Counterexample-
guided Abstraction Refinement (CEGAR) is a highly configurable formal verification
metho. Adding new techniques to it for better performance is an active research area.
My goal in this work is extending CEGAR in ways to improve usability and applicability
of formal verifiers. I focused on two specific challenges: I) correctness of the tools, mainly
concentrating on validation of the model transformation, II) runtime monitoring of the
formal verification, detecting the lack of refinement progress to improve performance.

Part I In the first part I focused on engineering models and how they are formalized
in model checkers. Formal verification necessitates the precise definition of execution se-
mantics of the engineering modeling language to be able to transform the engineering
model to a formal representation. This is a complex task, as these semantics are usually
underspecified. To validate these model transformations, the current state of practice rec-
ommends creating test models, defining valid execution traces for them (mostly manually),
and comparing these traces to the ones returned by verifiers to check conformance. This
is an inefficient and error-prone method as valid traces can be easily missed.
For abstraction-based model checkers I propose utilizing these abstraction-based tech-
niques for automatic trace generation. I designed a trace generation algorithm, which is
able to handle several cases with infinite state space. It utilizes abstraction in a config-
urable way and generates traces that do not unnecessarily repeat already covered states.
I evaluate the algorithm through a case study on tools for reactive state machines. I also
show the possibility of other use cases, such as the mitigation of modeling mistakes.

Part II Returning to verification, a typical challenge for formal verification and model
checking is performance. Large input programs, such as real-world software components,
are not easy to verify, as there is no configuration that performs well for any given input.
However, termination typically can not be guaranteed.
In my earlier work I noticed an issue of refinement progress halting, stopping the conver-
gence of the verification algorithm to success. I proposed runtime monitoring to solve this
issue and used it in a complex portfolio. In this work, I was able to assess the issue and
my runtime monitoring techniques better, resolving the causes and effects of the issue in
more detail and updating, correcting and making runtime monitoring configurable.
This time I evaluate runtime monitoring in detail by executing different CEGAR and
monitor configurations on the de-facto standard software verification benchmarks of SV-
COMP and analyzing the results.

ii

Chapter 1

Introduction

With the increasing complexity of safety critical systems, verification techniques are expe-
riencing a growing importance. Models play a central role in the design and development of
these systems and thus the verification of not just software code, but also design models is
a crucial step [53, 58]. There are several complementary verification techniques available,
such as testing, simulation or formal verification.
Formal verification techniques offer the capability of not only being able to find (error)
property violations, but also the absence of them [34], proving the system safe for the given
property. One of the best known formal verification techniques is model checking [6, 47].
Model checking [33] utilizes exhaustive state space traversal. But naive state space traver-
sal is computationally expensive and often made infeasible due to state space explosion
(i.e. the exponentially growing number of possible states). Many techniques were proposed
and are in use to mitigate state space explosions, such as bounded model checking [25],
symbolic methods [27] or abstraction-based techniques [32, 33].
There are many different model checking tools in different application domains [54, 12],
implementing these algorithms and enabling their users to automatically check different
models (e.g. software code [12], hardware models [54] and so on). Different application
domains come with different challenges, e.g. regarding soundness, correctness or perfor-
mance.
Counterexample-guided Abstraction Refinement (CEGAR) is a highly configurable model
checking method with many existing techniques for abstraction and refinement [49, 20, 70].
My goal in this work is extending CEGAR in ways to improve usability and applicability
of formal verifiers. I focused on two specific challenges.
Part I correctness of model transformation in formal verifiers. The core part of these tools
is the analysis itself on a formal model, but the correctness of the inevitable transformation
step from the engineering model to the formal representation is just as important, however
it is not trivial.
Termination for CEGAR executions typically can not be guaranteed. In practice, a time
limit is set up and the execution is stopped with an inconclusive (timeout) result when
this time limit is reached. In Part II I show how and why it is possible that a timeout
is caused by an “infinite CEGAR-loop” due to lack of refinement progress and propose
runtime monitoring to detect and mitigate such cases.

1

Part I: Trace Generation for Validating Semantics

Problem Statement Formal verification tools implement much more than a single
algorithm: they execute complex processes including the transformation of the input model
to an unambiguous formal representation, optimization on this formal model and the
backannotation of the results to the original model [7].
Formal representations are necessary for an algorithm to reason upon the model with
mathematical precision. However there is a large semantic gap between engineering design
models and formal models, as design models tend to be semi-formal and ambiguous. This
makes the mapping between the two a non-trivial and complex task. Although model
checking algorithms are typically proven to be correct [32], this is often not the case for
the model transformation and optimization steps preceding the model checking algorithm.
Due to this semantic gap and the complexity of the verification process, subtle semantic
and implementation issues might be introduced in the model transformation and optimiza-
tion steps and these issues can easily remain hidden. If the formal model is syntactically
correct, but semantically inaccurate, i.e. it has different behaviour from the original model,
then the results of the model checker should be invalidated.
For example the tool might not find issues that are present in the input model, but absent
from the formal counterpart causing a missed bug, which will most likely go unnoticed.
So the question arises: when can we trust the results of a formal verification tool?

Solution Proposal I propose the end-to-end (E2E) validation of verification processes
to find issues in the semantics implemented by the model transformation process.
Engineering modeling language semantics are typically not fully formalized and therefore
the validation process needs to include manual checks. An intuitive and typical method for
validation of model semantics is to check what executions the model is capable of through
execution traces of a conformance test suite [64].
I propose the automatic generation of execution traces using the model checker under
validation itself. Although the validation approach is partially manual, it can be assisted by
automated tools. The scope of the algorithm proposed in this work are mainly abstraction
based model checkers.
Generating test cases through counterexample traces of model checkers is an already widely
used approach [41], but it typically suffers from issues mainly caused by the blackbox usage
of model checkers [40].
The proposed novel algorithm utilizes lower level features of model checkers. The abstrac-
tion and state space traversal capabilities can be utilized for generating execution trace
sets with unique coverage guarantees for states, transitions and data variables as well.
During trace generation, the model transformations and optimizations typically executed
during verification are also used. Thus the resulting trace set will reflect the semantic map-
ping applied by the model checker. This makes the generated execution traces appropriate
for E2E validation.

Evaluation To evaluate the algorithm and the validation approach, I created a proto-
type implementation to validate the verification process of Gamma [61] and Theta [69], a
toolchain for state machine based reactive systems.

2

The case study includes the design of a validation model suite, quantitative analysis of the
resulting traces and detailed examination of the findings of the validation process. The
models and traces are available as an artifact [2]. Based on the results, the approach was
deemed successful, as the compact trace set made manual validation feasible and multiple
issues and limitations were found in the toolchain.
Furthermore, trace generation was also executed on several real-world models as another
case study. This illustrates another use case of trace generation: assisting the understand-
ing of semantics on the concrete model itself and possibly detecting modeling mistakes,
i.e. human error. Though it has some limitations, this approach also proved to be feasible.

Part II: Runtime Monitoring of Refinement Progress

Problem Statement Formal verifiers often face performance problems, hindering their
applicability. Large input programs, such as real-world software components, are challeng-
ing to verify, as formal verification techniques are computationally expensive and there is
no configuration that performs well for any given input.
Although the input model is often simply just too large and complex to be verified within
a realistic time limit, this is not always the case. In my earlier work [1] I noticed an issue
of refinement progress halting, stopping the convergence of the verification algorithm to
success. In this work I analyze this issue in greater depth including causes and effects
from an algorithmic standpoint.

Solution Proposal In my BSc thesis [1] I proposed runtime monitoring to solve this is-
sue and used this technique in a complex portfolio, but it did not receive focused attention.
In this work I revisit this monitoring technique and introduce several additions.
Detection and mitigation are split into separate components – both are heuristics in prac-
tice and other mitigation methods might also be possible, so they should be available
separately.
Earlier several artifacts of the analysis were monitored, but it is not trivial if this is
necessary or beneficial, so a configuration tracking only the counterexamples is also added,
which will be used in the experiments during evaluation. Furthermore, mitigation included
an issue discovered since then, which is also fixed in the current thesis.
Deeper analysis on when and how these techniques might be beneficial is also added sepa-
rately both for detection and mitigation, which stem from empirically collected experiences
since my BSc thesis.

Evaluation The runtime monitoring techniques were already used in a portfolio with
many other techniques, but were not separately evaluated beforehand. The benchmark-
ing experiment of this work concentrates on the different aspects of these techniques by
running 9 different configurations on 4079 programs of the software benchmarking set of
SV-COMP [12] and comparing how the different runtime monitoring techniques perform
with different CEGAR configurations.

Summary Both proposed techniques of this thesis were successful when evaluated and
show promising results in improving model checking for real-world use. Thus the objective
of this work to improve CEGAR in practical use is achieved, while possibilities of further
research on these topics is also opened.

3

Chapter 2

Background

This chapter provides the necessary background and context for this thesis: first, the
role of formal verification in developing safety critical systems is described in Section 2.1.
Then formal verification and model checking is introduced with focus on abstraction-
based techniques (Section 2.2). Lastly, the different models throughout model checking
and formal verification processes are explained (Section 2.3).

2.1 Verification of Critical Embedded Systems

With the rising number of application domains and growing complexity of critical embed-
ded systems, design processes are also becoming more and more complex. A common way
to handle complexity is to utilize techniques of model-based systems engineering by cre-
ating different design models throughout the whole process. These design models capture
the structure and behaviour of the system under development.
When models are extensively used during design, verification of such engineering models
is a crucial part of these processes. Different project goals and types of models require
different techniques, such as testing [44] or simulation. These are often complementary
techniques used with different goals in mind, as each has their own set of strengths and
weaknesses. Some typical examples are as follows.

Simulation is capable of executing the models, usually on the main scenarios to let the
user examine the behaviour of the model through execution traces. Simulation is
widely used in practice to check software, hardware, mechanical etc. design.

Model-Based Testing in general test cases are often created manually, following a given
test design approach. However when utilizing model-based testing, models can be
used for automatic test case generation following pre-defined coverage criteria. Ex-
tensive research work and many different methods exist in this topic [26, 48].

Conformance testing is a specific problem in testing, which aims to uncover whether
the model and the implementation of the system has the same observable behaviour.
Conformance test suites can be created manually [52], or generated based on models
(e.g. with the W or Wp method [26]).

Formal Verification stands for methods that are capable of automatic reasoning upon
a formal model to prove violation or correctness regarding a given property.

4

Init

Err

Abstract State 1 Abstract State 2

(a) Improper abstraction level causing a
false positive result.

Init

Err

Abstract State 1
Abstract
State 2

Abstract
State 3

(b) Proper abstraction level proving Err
unreachable.

Figure 2.1: Model checking with abstraction: the circles are concrete states of the model,
while the rectangles are abstract states. The goal is to prove reachability of the Err state.

Testing and simulation is a typical technique for many systems. But when a system is
critical enough to require additional proofs of correctness, formal verification techniques
also have to be utilized.

2.2 Formal Verification and Model Checking

Formal verification techniques utilize mathematically precise reasoning over the formal
model of a system to prove the violation or satisfaction of given properties.
Model checking [34] is a formal verification technique utilizing automated and exhaustive
state space traversals to give counterexamples or proofs of correctness regarding different
properties, such as reachability of a given state, termination, variable overflows and so on.
State space traversal, in general, cannot be done efficiently due to the issue of state space
explosion: the state space can easily grow exponentially with the number of variables, i.e.
a single 32 bit integer can represent 232 values, adding a multiplier of 232 to the number
of possible states.
Tackling state space explosion is one of the main problems of model checking algorithms.
There are many well-known techniques, e.g. bounded model checking [25], symbolic meth-
ods [27] or abstraction [32, 33].

2.2.1 Abstraction in Model Checking

Various abstraction techniques found a common use in many different model checking al-
gorithms. Abstract states can cover several, if not an infinite amount of concrete states.
With the right abstraction level the abstract state space becomes small enough for exhaus-
tive traversal, while also proving a violation or correctness, as illustrated in Figure 2.1.
Finding the right abstraction level requires further techniques to be used, e.g.
Counterexample-guided Abstraction Refinement (CEGAR) [32], where abstraction and
refinement are combined in a loop alternating the two as shown in Figure 2.2. Details
of Figure 2.2 are detailed below.

5

Abstract Counterexample

BuildAbstraction

Refined Precision

Prune Refinement

Safe Unsafe

Initial Precision

ARG

Figure 2.2: The CEGAR loop.

2.2.1.1 Abstract Domains

Implementing abstraction requires an abstract domain, a precision and a transfer function
to be defined. Informally an abstract domain defines the domain of abstract states, the
current precision shows the level of abstraction, while the transfer function defines how
the successors of abstract states.
Formally they can be expressed the following way:

Definition 1 (Abstract Domain [18]). An abstract domain is a tuple D = (S,⊤,⊥,
⊑, expr) where

• S is a (possibly infinite) lattice of abstract states,

• ⊤ ∈ S is the top element,

• ⊥ ∈ S is the bottom element,

• ⊑ ⊆ S × S is a partial order conforming to the lattice and

• expr : S 7→ FOL is the expression function that maps an abstract state to its meaning
(the concrete data states it represents) using a first order logic (FOL) formula. �

Definition 2 (Transfer Function [18]). Let π be the precision defining the current
precision of the abstraction.
Then the transfer function is T : S × Ops × Π 7→ 2S , calculating the successors of an
abstract state with respect to an operation and π. �

There are many possible abstract domains, e.g. Cartesian predicate abstraction [45],
boolean predicate abstraction [9], explicit-value abstraction [16] or even combinations of
these and others [5]. Although the trace generation methods in this work will focus on the
explicit-value domain, but predicate abstraction will also play an important role later on.

Explicit-value Abstraction [16] The explicit-value domain introduces a fairly sim-
ple method of abstraction, which tries to directly remedy state space explosions by only
tracking the value of a subset of the variables.
Thus the precision is defined by adding which variables should be tracked and the abstract
states contain value assignments to all of the variables, which are made abstract by the
capability to assign the value “unknown” (⊤) to untracked or unassigned variables.

6

Predicate Abstraction [8] Cartesian and boolean predicate abstraction tracks a list
of predicates as precision instead of variables. Cartesian abstraction keeps track of a
conjunction of these predicates, while boolean predicate abstraction allows any arbitrary
predicate combinations, not just conjunctions.

Expressive Power of Abstract Domains Most abstract domains have limitations in
what they can express. These limitations cause a loss of precision, i.e. there is information
that can not be expressed in that domain [8]. This can prevent the success of the analysis,
if this information would be crucial to express.
Although the manner of limitations is diverse, expressive power can often be compared
inbetween domains. For example, compared to explicit abstraction the Cartesian predicate
domain is more expressive, e.g. both of these domains can track x = 1, but predicate
abstraction can also add more complicated predicates, such as x > 1. However, Cartesian
predicate domain tracks a conjunction of predicates, not arbitrary combination, which still
introduces its own limitations.
Larger expressive power introduces its own advantages and disadvantages: it enables the
model checker to be more precise, but also causes a significant performance overhead [8].

2.2.1.2 ARG

Abstraction based model checkers traverse an abstract state space building an Abstract
Reachability Graph (ARG) [17].

Definition 3 (Abstract reachability graph). An Abstract Reachability Graph is a
tuple ARG = (N, E, C) where

• N ⊆ S is the set of nodes, each corresponding to an abstract state in some domain.

• E ⊆ N × N is the set of directed edges. An edge (s1, s2) ∈ E is present s2 is a
successor of s1 with regards to the transfer function T .

• C ⊆ N ×N is the set of covered-by edges. A covered-by edge (s1, s2) ∈ C is present
if s1 ⊑ s2. �

The model checker builds the ARG by expanding already existing nodes with their suc-
cessors and adding directed edges. A covered-by edge will be used where possible instead
of expanding the node. This is done on a given abstraction level, which allows the ARG
to stay finite in many cases, even when the concrete state space would be infinite. The
traversal can happen using many kinds of graph search algorithms from a simple BFS to
complex heuristics.

2.2.1.3 Traces

Paths inbetween the ARG nodes on the directed edges are called abstract traces. If the
path leads from the initial node to an erroneus state then the abstract trace is an abstract
counterexample. If it is feasible, then it can be concretized into a concrete counterexample.
Of course the feasibility check and concretization can be done on any given abstract trace.
Abstract and concrete traces are illustrated in the example of Figure 2.3. The abstract
states (rectangles) of the ARG only include the states of the EFSM, but not the value of x.

7

C

/ x++

A

[x>1]

[x<1]
B

input:
int x = 0

(a) An extended finite-state
machine (EFSM) with a sin-
gle variable.

A

assume x<1

B
x := x+1

C

assume x>1

A

(b) The ARG for the EFSM,
where x is excluded from the
precision. The dashed edge is
a covered-by edge.

A, x=0

B, x=1
x := x+1

C, x=1

assume x>1

(c) Concretized trace from
the ARG.

Figure 2.3: Example of an ARG and concretized trace in the explicit domain.

There is an abstract trace in the ARG to C, which can be concretized to the trace shown
in Figure 2.3c, where x is now included and thus the states are not abstract anymore. On
the other hand, there is another abstract trace A − B − A in the ARG as well, which is
infeasible and thus can not be concretized.

2.2.1.4 Pruning back the ARG

Another point of configurability for refinement is how it modifies the ARG. The most trivial
example is full pruning, where the ARG is pruned back to it’s root and the abstraction
algorithms will start building it using the new precision from scratch. Another example is
what we call lazy pruning, which only prunes the counterexample under refinement back
to the point where actual refinement occurred [49].

2.3 The Models throughout Model Checking in Practice

This section intends to give insight on how model checking looks in practice through the
typical types of models and modeling languages that can be utilized throughout verification
processes. These model types and some examples are listed in Figure 2.4 and explained
in the paragraphs below.

(Automatic) Model
Transformation

Input model

Model Checking
Analysis

Formal Model Result

Software,
Design Model,
Specification, ...

Control Flow Automata,
Petri Net,
Symbolic Transition
System, ...

Counterexample in
Individual Format,
Witnesses,
Executable Test
Harnesses, ...

Figure 2.4: Typical models throughout the verification process.

8

Input Models Model checking is a widely used method with many different application
domains, e.g. hardware specifications [66], software [12], protocols [30, 35], engineering
and business models [54, 61]. Thus input models are often design models or software code
instead of unambiguous formal models.
In this thesis the evaluation will focus on state machines modeling reactive systems and
thus most examples will also be added as state machines, although the proposed algorithms
and processes are not limited to these kind of models.

Formal Representation The system under verification has to be an unambiguous for-
mal model as this enables reasoning with mathematical precision over it. It is not unheard
of to directly create formal models or manually transform design models or protocol spec-
ifications to formal models (e.g. manually creating Petri nets or Extended Finite State
Machines).
However, most tools implement an automatic model transformation step instead, which
generates a formal representation out of the input design model, for example transforming
software code to Control Flow Automata (CFA) [7, 14].

Results, Counterexamples Beside a binary result of correct or faulty, model checking
tools may also provide a counterexample or a proof of correctness. Counterexamples are
concrete traces, usually backannotated to the input model from the formal representation,
so they are readable for the user. In some cases, mainly in software model checking, the
tool might even be able to generate an executable test harness [24], which runs the faulty
execution.
There are also initiatives in software model checking for a uniform format, called wit-
ness [21, 22]. This uniformity enables, for example, the validation of the proof or coun-
terexample by a separate verifier.
As described above, formal verification processes are more complex than just their core
algorithms and can include many different models. These models and the transformations
inbetween all have to be correct in order for the tool’s results to be reliable. Making sure
of this correctness is a complex question and one of the key motivations of this thesis.
Thus it is further elaborated on in Chapter 3.

9

Part I

Abstraction-based Trace
Generation to Validate Semantics

in Formal Verifiers

10

Chapter 3

Validating Semantics of Verifiers

This chapter introduces the common formal verification process of model checkers in detail
(Section 3.1). It describes how issues in model transformation endanger the validity of the
verification results (Section 3.2).
Section 3.3 explains why these model transformations are also error prone due to ambigu-
ous semantics, especially if the input model is some kind of engineering model.
Section 3.4 proposes a solution: a validation process based on trace generation, which will
serve as the basis for the rest of I.

3.1 Formal Verification Process

The scope of this work will mainly revolve around the formal verification of engineering
models with model checking tools. Engineering models are used not just for mutual
understanding, but for more and more refined design as well. Due to their growing function
importance, formal verification of these models is becoming crucial as well. One of the
best-known formal verification approach is model checking.
The typical high-level process implemented for verification in tools or toolchains is shown
in Figure 3.1. Although the actual reasoning upon the model is executed in the model
checking analysis step, the verification process itself consists of much more steps than that.

Design Tool Usually there is a design tool at the beginning of the toolchain, used to
create the engineering models (e.g. activity diagrams, state machines, hardware de-
scriptions).

Engineering Model and Modeling Language The engineering modeling language
might be text-based or visual, but it is certainly operating on a fairly high ab-
straction level to help usability.

Model Transformation Such a model cannot be reasoned upon directly by the model
checker, so it goes through a series of model transformation and optimization steps
and is transformed into a formal model, which has an unambiguous, formal language
that the model checker can work with.

Model Checking Analysis The model checking algorithms of the tools are executed on
the formal model, as described in Section 2.2.

11

Engineering Model Model Transformation Formal Model

Model Checking
Analysis

Back Annotation Trace(s)Engineering
Trace(s)

E. Modeling
Language

Formal
Representation

Language

Engineering
Design Tool

Intermediate
Representations

Transformation steps

Optimization passes

referencesreferences

Figure 3.1: Typical process of a model checking toolchain.

Backannotation and different Trace representations If the tool finds any issues, it
might return a counterexample or counterexamples as execution traces of the formal
model. This has to be backannotated to the original engineering model to help the
user mitigate the issue found.

3.2 Problem Statement

As it was shown in Section 3.1, using formal methods includes a complex verification
process. Furthermore, error properties also have to be designed and added to the model
checker, the right configuration has to be found and so on. All in all, it takes a considerable
amount of effort to use these tools, but in a lot of cases it is worth it for the mathematically
proven results.
However, the introduced process had to be implemented in the verification toolchain and it
might contain different issues due to human error. Therefore the main question motivating
my research was:

How can we trust formal verification tools?

If we do not make sure that all the implemented steps in the verification process are correct,
the results of the tool are basically invalid: both false positives (i.e. false alarms) and false
negatives (i.e. missed bugs) can possibly happen and thus the advantage of getting proofs
with mathematical precision is lost.

Model Checking Algorithms The core part for verification is the analysis executed
by the model checker. This analysis is not just for finding potential issues, but also to

12

prove soundness: if it finds no issues regarding the error property, ideally we expect that
there really is none [34]. A lot of work goes into the correct formalization of the algorithms
used in the analysis and also to proving that they are correct [32].

Model Transformations On the other hand model transformation steps, including
optimizations, are usually much less rigorously checked, even though bugs in these steps
can cause both false positive and false negative results.
For example, an issue in the model transformation step practically means that the analysis
is reasoning upon a different model, over a different state space. Such an issue is really
hard to uncover. If it causes a false alarm, it is possible to discover that the root of the issue
is the model transformation and to debug it through the incorrect counterexample, but it
requires a deep understanding on how the model transformation step works. However if
the result is a false negative, it can easily remain completely hidden and the missed bug
will remain in the model, even though the user will believe that the model is correct.

3.3 Challenges of Semantics in Model Transformation

Semantic Gap What makes model transformation steps more error prone is the seman-
tic gap inbetween engineering modeling languages and formal representations. Although
there are more and more initiatives for formalizing the semantics of engineering mod-
els [64, 65], full formalization of any engineering modeling language used in practice is
impractical. On the other hand formal models are fully unambiguous mathematical mod-
els. Thus mapping an engineering modeling language to a formal representation requires
the mapping of an ambiguous language to an unambiguous one.

Advantages of Ambiguity These modeling languages are made to enable the mod-
elers to design complex systems with ease, thus they include complex language elements
(e.g. non-determinism, concurrency, variables representing data). These complex language
elements serve to enable many possible executions of the model while the model itself
stays concise. These models are also often created iteratively with gradually increasing
refinement, therefore these languages by design have to be able to express models that are
still ambiguous and will only be refined in later iterations.

The Need for Unambiguity On the other hand, the precise reasoning of model check-
ers requires unambiguous formal models. This requires the developer implementing the
transformation to make decisions regarding missing and ambiguous parts of the semantics
of the engineering models. The correctness of these decisions depend on the developer’s
understanding of semantics. If semantics are misunderstood and bugs are introduced to
the model transformation, the results of the model checker might become invalid and this
might not even be detected.

3.3.1 Example of Ambiguous Semantics

One of the most well-known behavioral engineering models used in embedded systems are
the different state machines ranging from simple finite state machines (FSMs) to UML or
SysML [42] state machines. While the former is a low-level mathematical automaton, the
latter offers more elements, such as variables to be able to express complex systems.

13

f [i==2]
e

eInit

e / i := i+1
exit / i := 2*i S12

e / i := i-1
exit / i := 3 S22

Error

Workinginteger i := 0

S11

S21

Figure 3.2: State machine containing language elements with ambiguous semantics.

The state machine shown in Figure 3.2 contains several typical language elements where
interpretation of semantic rules highly affect the number of possible executions. Many
state machine languages introduce concurrency in the form of orthogonal regions and
non-determinism by adding conflicting triggers on several transitions. Another common
addition are variables, used in actions and guards as well.
To be able to decide on the enabled executions, we have to precisely answer all of the
following questions:

• Is full concurrency enabled, i.e. can the outgoing transitions of S11 and S21 fire in
any order?

• Is the firing of a transition in a single region atomic, i.e. can anything else be em-
bedded inbetween the execution of the exit action and the effect of the transition?

• Is there transition priority and if there is, what parts have priority, i.e. the outer or
the inner transitions? Is it even possible to fire the transitions inside the composite
state or will the model always go back to the Init state instead?

Different semantics and standards have different answers to these questions or some of
them might even be configurable in some tools (e.g. transition priority). Furthermore,
usually it is also possible to find questions that the semantics of a given language do not
even answer unambiguously.

3.4 An Approach to E2E Validation of the Verification Pro-
cess

The last two sections described why it would be necessary to validate the semantical
mapping inbetween the engineering and formal model and why it is a difficult and complex
task. Automatic validation is practically impossible due to the lack of fully formalized
semantics of the engineering models.

14

Model 01
Trace Set...

Intended
Semantics

Observed
Semantics

E2E Validation

Conforms?

Model n
Trace Set

Manual Validation

Validation
Model Suite

Model
Transformation

Back
Annotation

Trace
Generation

Modified Verification Process

Figure 3.3: End-to-end (E2E) validation with trace generation.

I propose an approach providing the possibility of the end-to-end (E2E) validation of this
process by utilizing the model transformation and the verification tool for trace generation.
The goal of this validation process is to compare the intended semantics of the engineering
model to the observed semantics after model transformation.
The trace generation algorithm shown in Figure 3.3 takes a model and uses the same
process as it would use for verification (Figure 3.1), but where the model checker would
execute the analysis, it generates a set of traces instead, which guarantee some kind of
well-defined coverage or completeness. The trace generation algorithm is formalized and
introduced in detail in Chapter 4.
The traces enable the user to manually compare the model and the execution traces, look-
ing for executions that should not be permitted or a lack of traces that should. As input
models for trace generation a validation model suite shall be designed, which covers a wide
range of modeling elements and combinations of these elements. If this is accomplished,
the generated traces might be able to uncover a wide range of possible issues in the different
transformation and optimization steps or even in the back annotation process.

3.4.1 Another Use Case: Mitigating Modeling Mistakes

If the validation is deemed to be complete, there is another possible use case for the trace
generation algorithm. The same process (Figure 3.3) can also be executed on a real-world
engineering model instead of a test model.
The traces of a real-world model are useful if the modeler is unsure or might be mistaken
about semantics. In this case the manual validation step shown on Figure 3.3 should be
carried out by the modeler, this time comparing the modeler’s understanding of semantics
to the semantics implemented in the verification toolchain.

15

Chapter 4

Abstraction-based Trace
Generation Algorithm

In this chapter I introduce a trace generation algorithm intended to be built around
abstraction-based tools. First I describe the prerequisites of the algorithm (Section 4.1).
After that the algorithm without abstraction and its extension with abstraction are for-
malized and explained (Section 4.2 and 4.3). The rest of the chapter adds an analysis on
coverage guarantees and usability.

4.1 Prerequisites of the Trace Generation Algorithm

The algorithms introduced below were designed to be built around abstraction-based [33]
tools which are capable of traversing abstract state spaces. Inevitably, some assumptions
have to be made about how these tools work.

4.1.1 Abstraction Capabilities

Abstract state space traversal features building abstract reachability graphs on different
abstraction levels and abstract domains. Thus the following requirements are established:

Abstract Domains The tool should include an explicit-value abstract domain [16] (or
any other domain capable of representing concrete values for the variables of the
model).

Building ARGs The tool should be able to build a fully expanded ARG [17] from a
given formal model and precision and should be able to concretize abstract traces.

If these requirements are already fulfilled by the tool, it should not be difficult to imple-
ment the trace generation algorithms. If not, case-by-case modifications are also worth
considering, e.g. it might be possible to modify the algorithm to work with some other
abstract domains as well.
There is however a further tool specific design point which has to be considered together
with the requirements for the usability of the trace generation.

16

ARG semantics ARGs [17] provide a fairly low-level graph structure for representing
state spaces. It receives semantic meaning from the abstract states, operations and transfer
function used, which will differ for each formal representation and tool.
For example, the granularity of abstract states can differ (e.g. are they only stable state
configurations or are there abstract states representing unstable state configurations inbe-
tween). What successors are calculated for the abstract states can also differ (e.g. if input
events that do not change the current state configuration are taken into account or not,
i.e. events which trigger no enabled transitions).
Thus the implemented logic and semantics for ARG building have to be compared to
the desired goal with trace generation. If there is a mismatch between the two, slight
modifications might be needed in the trace generation algorithm, such as filtering out
some unnecessary states or traces during trace generation. An example for this will be
shown in the case study used for evaluation in Section 5.1.2.3.

4.2 Generating Traces without Abstraction

Algorithm 4.1 utilizes the ARG building features of the abstraction-based tool. It uses
an explicit-value domain and adds every variable to the precision and then builds a fully
expanded ARG out of the input formal model. This will force the tool to build an ARG
with the least possible abstraction, which should result in a reachability graph (RG)
instead.
The main idea behind the algorithm is utilizing structural properties of reachability graphs.
Reachability graphs are often finite: if the variables in the model have a finite range of
possible values and the loops in the model have a finite number of possible states (i.e. at
some point a state in the loop can be covered by one from earlier).
For all these finite reachability graphs Algorithm 4.1 will generate a finite set of traces. The
generated reachability graph will also automatically assure that we do not unnecessarily
repeat states in the traces – this will be illustrated by the example in Section 4.2.1.

Algorithm 4.1: Trace generation algorithm without abstraction.
input : F : Formal model
output: T : Set of generated traces

1 π: Initial precision created including every variable
2 ARG(N, E, C) := buildARG(π, F)
3 n0 : initial node of ARG
4 Nleaf := ∀n ∈ N where n has no outgoing edge
5 for ∀n in Nleaf do
6 T ← trace from n0 to n
7 return T

4.2.1 Trace Generation without Abstraction Example

In this section I will show how the algorithm works on a simple state machine from the
model through the ARG to the traces. The formal representation created inbetween the
model and the ARG is omitted, since the examples of this chapter are small and simple.

17

e f
A

g h
B

i
C

End

(a) State machine form-
ing an "8"

Init

A
-

B

e

C

g

End
i

C

h

B

f

(b) ARG built from (a).
Dashed lines depict covered-
by edges.

i

e

g

fe
A

B

C

End

A

B

A

h
B

C

(c) Generated traces

Figure 4.1: Example showing the basic trace generation algorithm on a state machine.

A
f

B
e

(a) A state machine with a
loop

Init

A
-

B
e

A
f

(b) ARG for the state ma-
chine

A
f

B

e

0

1 2

(c) Single generated trace,
transitions are numbered in
the order of firing

Figure 4.2: Example showing how the algorithm avoids infinite loops

The input is visualized in Figure 4.1a. It is a simple state machine with 4 states and 5
possible incoming events.
In Figure 4.1b we depict a really simple reachability graph: there are no variables, so
in this case the states of the graph represent the active state of the input model. The
possible operations are assumptions on single incoming events, but the “assume” keyword
was omitted for brevity.
In Figure 4.1c the result of the algorithm is shown. As the ARG is finite, the set of traces
is also finite as well. The traces gradually shorten, because they stop at covered ARG
nodes and will not re-explore the already discovered states – this ensures that the trace
set remains relatively small and concise. This is also useful for the handling of larger
models and loops – Figure 4.2 shows an example for the latter.

4.3 Utilizing Abstraction

Engineering modeling languages usually heavily utilize several variables of different types.
Algorithm 4.1 keeps all of these variables in the precision, i.e. all variable values are
explicitly tracked and are part of the abstract states. This might lead to a state space
explosion in the ARG, which results in more and longer traces. These explosions are

18

abstract
state1

abstract
state 2

abstract
state 4

abstract
state1

abstract
state 2

abstract
state 3Trace 1

Trace 2

Figure 4.3: Trace 2 is only feasible if shortened, but then it is contained by Trace 1.

caused by the variables that are capable of holding many different values throughout the
model’s executions (e.g. indices and counters in loops).
Removing problematic variables from the precision mitigates such state space explosions.
This is heavily utilized in verification and might be just as useful for trace generation as
well – e.g. if we are mainly interested in possible control flows or possible values of other
variables instead.

Concretization and Feasibility Checks Removing variables from the precision means
that abstraction is introduced to the algorithm. Thus the algorithm has to be extended
with feasibility checks and concretization (marked as isFeasible(t) and concretize(t)),
as shown in Algorithm 4.2.
Concretization means creating a concrete trace out of an abstract one, if it is feasible.
During concretization untracked variables are re-added to the trace and concretization
finds a possible value for these (usually with the help of a SAT or SMT solver [34]).

Infeasible Traces Abstract traces that turn out to be infeasible will need special atten-
tion. The first important observation is that a shortened version of the trace might still be
feasible. Finding the longest, still feasible part (marked as shorten(t) in the algorithm)
is implementation specific. For example, it can be done with interpolants [10] or by just
shortening the trace state by state and doing feasibility checks each time.
The possibility of generating shortened traces also necessitates a filtering step at the end.
The reason for this is illustrated by Figure 4.3. Trace 2 only becomes feasible if abstract
state 4 is cut off. This shortened trace should be returned to show that abstract state 2
is reachable.
However if Trace 1 was also generated then it would be confusing to return both, as Trace
1 contains the shortened Trace 2. Thus in this case we should only return Trace 1. Note
that the check for containment happens inbetween the abstract traces, as both could have
several different concretizations.

4.3.1 Inappropriate Abstraction Level

There is another possible issue with infeasible traces which can be explained through
Figure 4.3: it is possible that there will be no concretized trace leading to abstract state 4,
even though in the concrete example it would be possible. For example, if abstract state 4
is only reachable via an execution where a loop with an index i has to be unrolled, but i is
not part of the precision, then the algorithm will find no trace leading to abstract state 4.

19

This issue can not be fully mitigated without adding i to the precision, but the user
might not want to do that, if adding i slows down the execution too much. So instead of
mitigation, a detection step is added to the algorithm.
This step collects the abstract nodes that are pruned down (i.e. removed from the end)
and also collects the abstract nodes that are concretized and included in the resulting
traces. If, in the end, there is any node included in the former than is not in the latter
then we could find no trace to reach that node with this abstraction, e.g. could not reach
abstract state 4. This is reported in the output, so the user can decide whether a less
abstract precision, e.g. adding i to the precision, is worth trying.

Algorithm 4.2: Trace Generation Algorithm with Abstraction.
input : F : Formal model, V : Set of variables to be included in the precision
output: T : Set of generated traces, fullCoverage: True, iff every abstract state

is included in at least one trace
1 π: Initial precision including V
2 ARG(N, E, C) := buildARG(π, F)
3 n0 : initial node of ARG
4 Nleaf := ∀n ∈ N where n has no outgoing edge
5 for ∀n ∈ Nleaf do
6 T ← trace from n0 to n
7 Tconcretizable := ∅
8 Nincluded := ∅
9 Npruned := ∅

10 for ∀t in T do
11 if ¬ isFeasible(t) then
12 t′ := shorten(t)
13 Npruned ← ∀n ∈ t, /∈ t′

14 if |t′| > 0 then
15 Nincluded ← ∀n node of t′

16 Tconcretizable ← t′

17 for ∀ta, tb ∈ Tconcretizable, |ta| ≤ |tb| do
18 if ta starts with tb then
19 Tconcretizable := Tconcretizable \ ta

20 if ∃n ∈ Npruned, /∈ Nincluded then
21 fullCoverage := False
22 else
23 fullCoverage := True
24 Tconcrete := ∅
25 for ∀t ∈ Tconcretizable do
26 Tconcrete ←concretize(t)
27 return Tconcrete, fullCoverage

4.3.2 Trace Generation with Abstraction Example

In Figure 4.4a a state machine with entry actions and two variables is shown. Using
Algorithm 4.1 without abstraction would result in 60 traces, as all of the possible values
of i would be enumerated. If i is removed from the precision, the ARG becomes much
smaller as shown in Figure 4.4b and the algorithm results in the three traces shown in
Figure 4.4c.

20

e

A

f [i<60]

B
entry / flag := !flag;

i := i+1;

int i := 0
bool flag := true

C
entry / flag := !flag;

g

(a) State machine with two variables.

Init, true

e
A, true

-

g fB, false fg
B, true

C, true

B, false

C, false
(b) ARG built by removing i from the pre-
cision

e

A

g

B

C

e

A

g

B

C

f [i<60]
e

A

B
f [i<60]

(flag=T, i=0)

(flag=F, i=1)

(flag=T, i=1)

(flag=T, i=0)

(flag=F, i=1),
(flag=T, i=2)

(flag=F, i=2)

(flag=T, i=0)

(flag=F, i=1)
(flag=T, i=2)
(flag=F, i=3)

(c) Resulting traces.

e

A

g

B

C

(flag=T, i=0)

(flag=F, i=1)

(flag=T, i=1)

(d) Result if the guard
is changed to [i < 1]

Figure 4.4: Example of using abstraction for trace generation.

21

Init

Figure 4.5: Possible ARG structure to illustrate ARG node coverage. The nodes are
(abstract) states, the thick arrows show the abstract traces found in the ARG.

The difference between removing i from the original model and removing it from the
precision is highlighted on Figure 4.4d. If the guard of the input model is changed from
[i < 60] to [i < 1], the self-loop of B will not be able to fire at any time. As the change
only concerns i, the ARG built by the algorithm stays the same. Yet the number of the
traces goes down to one – this is due to the fact that the other two traces become infeasible
and cannot be concretized.

Inappropriate Abstraction Level It is also worth to note that if we add, for example,
the guard [i == 50] on the transition leading to C in Figure 4.4a, we get an example where
the algorithm will return false to the fullCoverage value, as it does not unroll the loop
without including i in the precision and thus will not find a trace leading to C, flag = true
and C, flag = false. If we change the guard to [i == 70], we will get the same warning,
even though C is not reachable in this case, but without the appropriate abstraction level,
this can not be discovered, as explained earlier in Section 4.3.1.

4.4 Analysis of the Proposed Algorithm

In this section the coverage guarantees of the proposed algorithms are considered (Sec-
tion 4.4.1). After that the strengths and weaknesses of the algorithm are also summarized
(Section 4.4.2).

4.4.1 Coverage Guarantees

Coverage guarantees will first be considered on the level of the ARG and after that on
a more general, engineering model level as well. The former is deduced from how the
algorithm works, while the latter can usually be deduced from the former.

22

4.4.1.1 Coverage on the ARG level

State Space Coverage Figure 4.5 illustrates why abstract state space coverage is ac-
complished: in the fully expanded ARG the whole abstract state space is represented by
the ARG nodes (shown as circles). As there is a trace to every leaf (shown by the thick
arrows) and a node is either a leaf or has outgoing edges, every node is included in at least
one trace. Thus the algorithm easily covers the whole abstract state space. If there is no
abstraction applied and all variables are included in the abstract states, the abstract state
space coverage becomes concrete state space coverage as well.
In Section 4.3.1 the possibility of not reaching some of the abstract states was explained.
If this happens then the abstract state space is not covered by the traces. Repairing the
coverage requires finding the right abstraction, but the added complexity of this step can
easily make the algorithm infeasible to use in practice. Instead the algorithm detects this
incomplete coverage and lets the user decide on changing the abstraction level.

ARG Edge Coverage The edges leading inbetween nodes in an RG are also covered
(excluding covered-by edges), as each ARG node is covered and each ARG node has exactly
one incoming edge. For ARGs this coverage only holds if there are no infeasible traces
amongst the abstract traces. Keep in mind that this does not guarantee any kind of
coverage for the possible inputs, e.g. input events that trigger no response in the current
state of the model might not be added as an edge while building the ARG.

Comparison of Trace Generation with and without Abstraction With the in-
troduction of abstraction, an important trade-off appears, which is shown in Table 4.1.
While without abstraction the whole concrete state space is covered, this can make the
number of traces grow really high, making manual checks infeasible. On the other hand,
abstraction is capable of mitigating state space explosion and can provide a concise set of
traces, however untracked variables remain uncovered.
Both approaches have possible issues, which render them unusable for some models. With-
out abstraction the state space might explode so much, that the algorithm times out and
does not even provide any traces. With abstraction one might not be able to find an
appropriate abstraction level, which results in the loss of coverage guarantees.

Trace Generation without Abstraction with Abstraction
Abstract State
Space Size can explode can prevent explosion

Number of
Traces easily grows high can stay concise

Concrete State
Space Coverage yes no

(does not cover untracked variables)

Possible Issues State Space Explosion
(timeout)

Inappropriate Abstraction Level
(loses abstract state space coverage)

Table 4.1: Not using abstraction provides more guarantees, while abstraction helps
keeping the number of traces concise, but still providing coverage for important variables.

These ARG-level coverages can be used to deduce what kind of coverages we might reach
in the original input model, which is added in the next section.

23

4.4.1.2 Typical Coverages for Engineering Models

Typical coverage criteria in engineering models, e.g. in conformance testing, do not build
directly around state space. Thus it is important to examine coverage criteria on the input
model for control and data flow as well, not just on the state space and ARG-level.
There are no general criteria for behavioural engineering models, rather separate, more
specific definitions for state machines, activity diagrams and so on. But these are often
similar in practice, as they build around data and control flow, which are present in all
of these models. Thus typical state machine criteria are used here, but criteria for other
model types is also possible to derive from these.

Definition 4 (All-States Criterion [72, 74]). This criterion is satisfied iff each state
of the state machine is visited. �

Definition 5 (All-Configurations Criterion [74]). This criterion is satisfied iff each
state configurations are visited (i.e. composite states and orthogonal regions activate sev-
eral states at once). �

The satisfaction of All-Configurations implies satisfaction of All-States as well.

Definition 6 (All-Transitions Criterion [31]). This criterion is satisfied iff each tran-
sition in the statechart is traversed. �

Definition 7 (Transition-Pair Criterion [63]). This criterion is satisfied iff for each
pair of adjacent transitions exists a trace that traverses the transitions in sequence. �

Definition 8 (Decision Criterion [72, 74]). This criterion is satisfied iff each guard
condition is evaluated to true and false as well (if it is possible) in at least one trace. �

Definition 9 (All-Defs Criterion [72, 74]). Satisfied if for every defining action (vari-
able value assignment) there is a trace which includes the defining action for a variable
and at least one usage of that variable after the defining action, without the redefinition
of the variable inbetween. �

Definition 10 (All-Uses Criterion [72, 74]). Satisfied if for every variable, every pos-
sible defining action and usage pair is covered in at least one trace, in definition-usage
order, without the redefinition of the variable inbetween. �

The definitions do not take impossible to reach model elements into account, e.g. unreach-
able states are not included in the All-States criterion.
The relations between the coverages and the algorithms are shown on Table 4.2 and are
explained in the paragraphs below.

Loop Coverage It is hard to find wide-spread coverage criteria specifically for loops, but
it is still an important point to consider. While the ARG is built, loops are automatically
unrolled until an already covered state is found. This ability guarantees that all possible
abstract states in the loop will be covered, but infinite loops with repeating abstract states
will not prevent termination either. Note however that variables excluded by abstraction
will not be considered while unrolling. Moreover loops will be unrolled into “lasso-shaped”
traces, i.e. the trace ends after the loop is unrolled.

24

Trace generation

without
Abstraction

with Abstraction

Criterion No state space coverage
violation detected

State space coverage
violation detected

All-States ✓ ✓ ✗

All-Configurations ✓ ✓ ✗

All-Transitions ✓ ✓ ✗

Transition Pair ✗ ✗ ✗

Decisions ✓ ✓ ✗

All-Defs, All-Use ✗ ✗ ✗

Table 4.2: Examining the algorithms regarding common state machine coverage criteria

Data Flow Coverage Traditional data flow coverage criteria (All-Defs, All-Uses) [68]
do not hold, mainly because these coverage criteria do not take into account the values
given to the variable at definitions. For example if there is a trace with a sequence of two
definitions giving the same value to the variable and then a usage, the trace generation
algorithm will not necessarily generate a trace that avoids the second definition. This is
due to the fact that the abstract state regarding the variable will not change before and
after the second definition.
However, this is actually a refinement of the criteria as this trace would be superfluous if
we consider the possible values of the variables, not just the definition itself and this is
exactly what the algorithm does.

Trace Generation Algorithm without Abstraction Due to the expanding of the
whole state space, this algorithm covers most elements of the model: states and state con-
figurations, transitions, guards (decisions). However, the combinations of these elements
does not necessarily get covered, e.g. Section 4.2.1 and Figure 4.1a gave a good example
of why it does not necessarily cover transitions pairs.

Trace Generation Algorithm with Abstraction As explained in Section 4.3.1 and
shown in Section 4.3.2, it is possible in some cases with some specific loops that a model
might not reach some abstract states which should be reachable.
This breaks the coverage of the abstract state space and thus will not guarantee the
coverage criteria for the input model either. These coverage violations are detected, but
can only be mitigated if the precision is changed.
However, for models where abstract state space coverage is intact, the input coverage
criteria listed in Table 4.2 is guaranteed the same way as without abstraction as untracked
variables do not directly influence these criteria, except All-Defs and All-Use which are
not guaranteed in either case, as explained in the “Data Flow Coverage"" paragraph.

25

4.4.2 Usability and Feasibility for Validation

The main motivation behind the design of the algorithm was to enable the end-to-end
validation of verification processes, mainly to validate the model transformation step (see
Chapter 3).
Arguably the most important step regarding the feasibility of the validation is if the traces
are appropriate and concise enough for the validating person to manually check.

Appropriate Traces The main question of the validation is what state configurations
and values are possible during executions and in what ways are these possible to
reach. Checking these should be feasible based on the coverage guarantees introduced
above.

Conciseness Even when the whole of the concrete state space is considered, states are
not visited repeatedly if it is not necessary (see Section 4.2.1). If the number of
traces is still high, it is possible to filter out unimportant variables with abstraction
and still have a good chance of keeping the coverage guarantees.

The points above are valid in many cases, but it also has to be mentioned that there will
always be models, where validation is hardly feasible, e.g. if the variable causing a high
amount of traces is important and cannot be omitted.
Timeouts are also possible if the (abstract) state space is too large (e.g. due to the sheer
size of the model or state space explosion). Building ARGs by iteratively calculating
successor nodes is typically done with SMT solvers [34], which can not be efficient in
general, although they are well optimized in practice.
However contrary to these issues Chapter 5 will show that validation and other use cases
are still feasible.

4.4.2.1 Examples of Tools with the Necessary Prerequisites

In Chapter 5 a prototype implementation is introduced in detail, which was implemented
in the toolchain of Gamma [61] and Theta [3, 69]. However, the algorithm would be
possible to implement in other abstraction based tools as well. In this Section, a few other
examples are introduced.

CPAChecker CPAChecker [14, 36] is a de-facto standard tool in software model check-
ing. Most of its algorithms are abstraction-based and it utilizes ARGs and an explicit
domain as well. The usability of the algorithm for software was not evaluated, but it
would be worth considering.

LoLA LoLA [67, 75] is a low-level Petri net analyzer. These properties make it pos-
sible to implement the trace generation algorithm without abstraction in the tool. This
can prove advantageous in validating either transformation processes from business and
engineering models to petri nets or to validate the petri nets themselves.

PLCverif – Theta PLCVerif [57] is a frontend for verifying Programmable Logic Con-
troller (PLC) programs, utilizing several backends, including Theta. As the algorithm is

26

already implemented in the generic core of Theta, only PLCVerif would need extensions
to handle several traces instead of a single counterexample.
Usually the ideal candidates to implement the algorithm in a given tool are its developers,
as they already have the necessary knowledge about the code base of the tool. But with
sufficient documentation this is not by all means necessary.

27

Chapter 5

Evaluation

This Chapter starts with the introduction of the prototype implementation of the valida-
tion process from Chapter 3 and the trace generation algorithms from Chapter 4 (Sec-
tion 5.1). Next, it details the goals and design process of this evaluation (Section 5.2).
Section 5.3 elaborates on the design of the validation model suite, while Section 5.4 and
Section 5.5 describe and discuss the results of both case studies of this evaluation.

5.1 Prototype Implementation

In this Section I detail the prototype implementation of the algorithms introduced in
Chapter 4. This implementation is realized in the tools Gamma and Theta and shows
how the prerequisites added in Section 4.1 apply to these tools.

5.1.1 Gamma and Theta

Gamma The Gamma Statechart Composition Framework [61] is an open-source model-
ing toolset with the goal of adding integrated verification and code generation features. It
supports UPPAAL [55] and Theta [4, 69] as verification backends. It has a textual language
for modeling, but it is also capable of visualizing models and traces with PlantUML 1. It
has been under active development since 2016, continually extending its features.

Theta Theta [4, 69] is a generic and highly configurable, abstraction-refinement based
open-source model checker. It is capable of handling several formal representations (e.g
Symbolic Transition Systems, Control Flow Automata, Timed Automata). It is mainly
built around CEGAR [32], but is also capable of executing BMC and lazy abstraction.
Furthermore, these basic algorithms can be further configured by changing the abstract
domain, the refinement strategy, the SMT solver or some other parameters used in the
chosen algorithm.

5.1.2 Process and Implementation

In this section the verification and the trace generation process of the Gamma-Theta
toolchain is described to give an overview on how the trace generation algorithms become a

1https://plantuml.com/

28

https://plantuml.com/

Statechart
Composition XSTS

Trace XSTS
State Sequence

Model
Transformation

Backannotation

Gamma

Model
Checking

ARG

CLI

Configuration
Theta

Statechart
Composition XSTS

Trace Set XSTS
State Sequence Set

Model
Transformation

Backannotation

Gamma

Trace
Generation
Algorithm

ARG

CLI

Configuration
Theta

Verification Process

Trace Generation Process

Optimizations

Optimizations

Figure 5.1: Verification and trace generation process

usable feature. The implementation specific details of the prototype of the trace generation
algorithms are also detailed here.

5.1.2.1 High Level View of the Process

The two tools together are capable of executing a complete formal verification process,
shown at the top in Figure 5.1. The starting point of this process is a statechart or
statechart composition, modeled in Gamma. This is transformed into a formal model,
called eXtended Symbolic Transition System (XSTS) [62].
This is then given to Theta as the input model, together with the configuration of the
analysis. We will consider the model checking analysis of Theta as a black-box for now –
all we know is that it is building ARGs and returns a counterexample in the form of an
XSTS state sequence when done.
Gamma is then capable of backannotating this state sequence, so it can be shown and
visualized as a trace of the original statechart composition.
It is important to note how complex this process is, even though every step is essential for
verification. There are 5 different models or formalisms that represent the model or some
part of it:

• Gamma Statechart (composition),

• XSTS,

• ARG (nodes, edges, statements and actions),

• XSTS State Sequence,

29

• Gamma Trace Language.

Any of the transformations inbetween these representations can introduce issues and bugs.
The bottom process in Figure 5.1 is a modified version of the verification process. Instead
of verification, it uses the trace generation algorithms from Chapter 4 and returns a set
of traces instead of a single counterexample.
The prototype implementation is integrated into the configuration language of Gamma.
This enables the user to easily add or remove variables if using abstraction and execute
trace generation with only a few clicks in Gamma.

5.1.2.2 Implementing Abstraction-based Trace Generation in Theta

The following points detail the tool-specific details, that were left as implementation spe-
cific in Chapter 4.

Prerequisites Theta more than suffices for the prerequisites detailed in Section 4.1.
It is abstraction-based and the main structure used in the analyses is the ARG. It has
configurable abstract domains, including the explicit domain and the initial precisions
already have some possible configurations (i.e. empty precision or inclusion of all variables),
which are easy to extend with a new one. Thus building fully expanded ARGs for arbitrary
models and precisions can be easily done in the tool.

Feasibility Checks and Concretization These features are implemented with the
help of SMT solvers in the tool, which are also capable of returning an interpolant, which
can be used for shortening the trace.

Configurability The algorithm is implemented, so the algorithm can be used both with
and without abstraction. If abstraction is chosen, a list of variables can be provided, which
contains the variables that should be included in the precision.

5.1.2.3 XSTS Specific Additions

Gamma transforms the state machines to a formal representation called eXtended Sym-
bolic Transition System (XSTS) [62]. XSTS models represent everything with variables:
not just the actual variables of the state machine, but control structures (i.e. states) and
the input and output events as well.
This required small adjustments at several points during implementations, such as:

• If abstraction is used, the variables representing control structures and output events
have to be automatically included in the precision.

• The transfer function allows branching into a direction where no transition is fired
– these become small "dead-ends" (the unchanged state is immediately covered by
its predecessor), which form traces that are unnecessary for validation, so these
dead-ends are cut-off from the ARG.

These adjustments are simple additions, which were made with the main goal of validating
model semantics in mind. Control structures and output events are both expected to

30

always be tracked. While in conformance testing it might be useful to check if a model is
really ignoring input events that it should not react to, in this case this was already shown
and presumed, thus traces only illustrating this behaviour would just make the number of
generated trace unnecessarily high.

5.2 Evaluation Design

I designed this evaluation to assess the feasibility and usability of the trace generation
algorithm (Chapter 4) and the end-to-end validation process (Chapter 3).

5.2.1 Research Questions

The evaluation was designed along the following research questions:

RQ1 Is manual validation feasible based on the number and content of the generated
traces?

RQ2 What types of issues can the validation process uncover?

RQ3 Can the trace generation be successfully executed on real-world models and give
meaningful insights about behavior?

5.2.2 Process and Goal of the Evaluation

The research questions can be divided into two parts: RQ1 and RQ2 are concerned mainly
with the end-to-end validation process, while RQ3 extends the scope to real-world models.
Thus the evaluation can also be divided into two case studies:

E2E Validation This case study evaluates the model transformation validation process
introduced in Chapter 3

Real-World Models Case study exploring trace generation on real-world models

5.2.2.1 End-to-End Validation

The goal of this case study was to show that the validation process is capable of discovering
inconsistencies and issues in the different steps (mainly the model transformation) of
the verification process of Gamma and Theta. The generic process itself was already
introduced in Chapter 3.
This case study also serves as the evaluation of the trace generation approach of this part
of the thesis, which is deemed satisfactory, if RQ1) the generated traces are appropriate
for the manual checks, RQ2) the validation process uncovers different issues in the tools
(or the lack thereof).
End-to-end validation consisted of the following steps:

1. Systematic design of a modeling suite for validation of semantics (Section 5.3)

2. Executing trace generation on the modeling suite, adding and changing abstraction
as needed

31

3. Quantitative evaluation: size of models (states, transitions, variables), size of gener-
ated traces (number and lengths) (Section 5.4.1)

4. Qualitative evaluation: manual check of traces, discovering findings and issues, ex-
ploring explanations and solutions (Section 5.4.2)

5.2.2.2 Real-World Models

This case study intends to give an example on the secondary use case of trace generation
by executing it on real-world models from state machines of reactive systems.
There are different tutorial and industrial models in Gamma which are used for evaluation
of new features on a regular basis. These are often complex systems of several state
machines, but these state machines can also be used on their own.
Section 5.4.3 reports on the results of trace generation on models from three different
projects: RQ3) investigates which ones were feasible to generate traces for and what insight
this gave on Gamma and the models themselves. The goal was to see the limitations and
capabilities of the algorithm on non-artifical models.

5.3 Designing a Validation Modeling Suite for Gamma

I systematically designed and modeled a validation modeling suite consisting of Gamma
synchronous state machines for the E2E validation case study. The design followed itera-
tive principles, i.e. it starts with a minimal set of model elements and progressively adds
more and more elements to the models. This helps the manual validation process to find
the roots of the discovered issues more easily.
The state machine language elements were extracted from the grammar of the Gamma
statechart language [61] and then filtered based on the goal of the case study, i.e. it is
out of scope to check every possible expression element (e.g. different operators) or state
machine compositions.
The focus of this study are single, synchronous state machines, mainly concentrating on
control flow and variables modifying control flow. The modeling suite covers a core set of
the elements and semantic features of single, synchronous Gamma state charts. This core
set can be arbitrarily extended in the future if needed.
The design went along the following groups of model elements in the following order:

A Basic elements (entry node, state, triggers)

B Loops (technically not a language element, but plays an important part in control
flow)

C Entry/exit actions, actions on transitions

D Composite States

E Orthogonal Regions

F Variables (assignments, modification of value, guards)

32

S0

S1 S2

input.e input.f

(a) Model 04 in package
A.

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {S0} with
__id_S0_0_S2_ = false
__id_S0_1_S1_ = false

input.f()

Execute

Statemachine in {S2} with
__id_S0_0_S2_ = true
__id_S0_1_S1_ = false

(b) First trace generated for the
model.

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {S0} with
__id_S0_0_S2_ = false
__id_S0_1_S1_ = false

input.e()

Execute

Statemachine in {S1} with
__id_S0_0_S2_ = false
__id_S0_1_S1_ = true

(c) Second trace generated for the
model.

Figure 5.2: State machine and traces modeled, generated and visualized in Gamma.

The packages are built upon one another in the order shown above: each of these introduces
a new group of model elements, while also utilizing the elements from previous packages
in at least some of the models.
The order of the elements is based on their complexity and if they can be used without the
packages before, e.g. everything depends on the basic elements, orthogonal regions utilize
composite states and so on. Variables were added as last as they can be used to enable
more possibilities and more complicated control flow to the models created earlier. In the
end, 30 models were created.

5.3.1 Understanding Gamma Models and Traces

As the remaining part of the chapter will introduce a lot of Gamma synchronous statecharts
and executions traces, this section will introduce how these traces can be interpreted.
Figure 5.2 shows model04, a simple state machine from the Gamma validation model suite
I created. Executing trace generation results in two traces, also shown on the figure. The
traces are visualized as sequence diagrams with a single life line, representing the model.
Input and output events are shown as lost and found messages. The environment and the
model step alternately – the step of the model is represented by the Execute annotation
on the lifeline.
After the model executed its step, the resulting state configuration and variable values
are shown in the yellow hexagon. The state current configuration is in brackets. Keep
in mind that in XSTS structure is also represented by variables and the boolean flags of
transitions are shown in this hexagon as well, making it possible to see what transitions
were fired during the step.

5.4 Results of the Case Studies

This section analyses quantitative results, such as the number and size of the generated
traces (Section 5.4.1) and then the findings of the validation process are detailed (Sec-

33

tion 5.4.2). In Section 5.4.3 the results of the other case study on real-world models is
reported.

5.4.1 RQ1: Quantitative Analysis of the Models and Traces

The basic trace algorithm was executed on all of the models, saving the resulting traces
separately for each of them. For the traces with variables in package F, additional execu-
tions with abstraction were also added.
The qualitative summary of the traces is shown in Table 5.1. As the models are small,
almost all executions ended up producing 1 to 4 traces with a maximum length of 4 (with
exceptions in only three models: model18, model28 and model25).
Designing the whole model suite required a few additional iterations, where some “vari-
ants” of some already existing models were added, either to be able to check if some feature
works as intended in both cases or to be able to understand findings more precisely.
Model01 uncovered a minor bug, where XSTS generation crashes for regions without
transitions. The trace generation will be able to execute successfully, when this issue is
fixed.
Time was not measured precisely, as all of the successful executions took mere seconds on
a personal computer, which should be more than enough for general usability.
On the other hand, model 24 did not terminate without abstraction, even with a time
limit of 30 minutes, so this execution was deemed to be a timeout. This was due to a
self-loop incrementing an integer variable without a guard or other bound. The execution
did not even finish building the ARG.
The manual part of the validation process did not cause much difficulty. The coverage
guarantees introduced in Section 4.4.1 are also in order in the trace sets. Typically a
model takes only a few minutes to check, mainly along the following guidelines:

1. if using abstraction, check if the tool reported a violation of abstract state space
coverage,

2. check if the number of traces is approximately right,

3. check if the length of traces is approximately right,

4. check the state configurations and variable values in the traces,

5. check which transitions were fired, check guard values and executed actions as well.

RQ1: Is manual validation feasible based on the number and content of the
generated traces?
All of the above mentioned quantitative properties were chosen to examine if the manual
check of each trace set is a feasible task. The results show that this is true: there are only
a few traces per model (if not, it can be mitigated using abstraction), which are also fairly
short, but cover the reachable states and fireable transitions to show the behaviour of the
model.

5.4.2 RQ2: Validation Findings

In this section the findings of the case study are reported. The rest of the traces and
models will not be detailed in this thesis, but are available as an artifact [2].

34

Model
(Package A) St. Tr. No. of

traces
Max.
length

model01 1 0 - -
model02 2 1 1 2
model03 2 2 2 2
model04 3 2 2 2
model05 4 4 2 3
model06 3 3 2 3
model07 4 4 2 2
model08 4 5 3 4

(a) Package A (with basic elements).

Model
(Package B) St. Tr. No. of

traces
Max.
length

model09 1 1 2 3
model10 2 2 2 3

(b) Package B (introducing loops).

Model
(Package C) St. Tr. No. of

traces
Max.
length

model11 2 1 2 2
model22 1 1 2 2

(c) Package C (introducing different actions).

Model
(Package D) St. Tr. No. of

traces
Max.
length

model12 4 2 2 2
model13 4 3 3 4
model14 4 3 3 3
model15 4 3 3 3
model23 3 1 2 2

(d) Package D (introducing composite states).

Model
(Package E) St. Tr. No. of

traces
Max.
length

model16 5 2 2 2
model17 6 3 4 4
model18 6 4 8 4
model20 6 3 2 4
model21 5 2 4 3

(e) Package E (introducing orthogonal re-
gions).

Basic Abstraction
Model
(Package F) St. Tr. Var. No. of

traces
Max.
length

No. of
traces

Max.
length

model24 1 1 1 T T 1 2
model25 1 1 1 1 11 1 2
model26 1 1 1 1 2 1 2
model27 2 1 1 1 2 1 2
model28 3 3 2 60 62 3 5
model30 1 1 1 1 3 1 3
model31 2 1 1 1 3 1 3
model32 5 2 3 1 3 1 3

(f) Package F (adds variables). Includes executions with abstraction (tracking no or boolean
variables only).

Table 5.1: Summary of results on all models: number of states (St.), transitions (Tr.),
traces (No. of traces) and the maximum number of state configurations in a trace (Max.
length).

35

S0

S1

S2

S3

input.e input.f

input.g input.h

input.i

Figure 5.3: “Form 8” state machine modeled in Gamma (model 08, package A).

5.4.2.1 Missing Default Values in XSTS

Discovery The first issue was found by discovering that a lot of traces are generated
more than once when executing the algorithm. After checking the formal model and the
ARG built for the model, a bug was found in the model transformation in Gamma.

Explanation As mentioned in Section 5.1.2.3, XSTS models [62] represent practically
everything with variables, including boolean flags representing transitions. XSTS also rep-
resents the steps taken by the environment and the model separately and in an alternating
manner. The transition variables are only relevant for the steps taken by the model and
are set to false by default at the beginning of each step of the model, so that the relevant
steps can be set to true later on in the step.
The hidden issue was that the value of the transition variables are also included in the
environment steps, but were not set to false by default. Thus the abstract states produced
by the environment steps superfluously reflected the transitions fired by the model earlier,
creating abstract states that could not be covered by one another, even though in reality
they should have been able to.

Solution The solution was to simply modify the model transformation step, so that it
includes setting these variables to false in environment steps as well.
The size of the produced ARG is crucial in verification, as in larger models ARGs growing
too big are often the cause for timeouts. This issue causes superfluous abstract states,
letting the ARG grow larger than it should. To illustrate, the fully expanded ARG built
for the small state machine shown in Figure 5.3 had 31 ARG nodes before fixing the issues
and only 20 ARG nodes afterwards.

36

S0

entry / output.a()
exit / output.b()

S1

entry / output.c()
exit / output.d()

input.e /
output.x()

(a) model 11 introducing en-
try and exit actions

statemachineTrace of statemachine

«SUT»
statemachine

output.a()

Statemachine in {S0} with
__id_S0_0_S1_ = false

input.e()

Execute

output.b()

output.c()

output.x()

Statemachine in {S1} with
__id_S0_0_S1_ = true

(b) Trace generated from model
11.

statemachineTrace of statemachine

«SUT»
statemachine

output.a()

Statemachine in {S0} with
__id_S0_0_S1_ = false

input.e()

Execute

output.c()

output.x()

output.b()

Statemachine in {S1} with
__id_S0_0_S1_ = true

(c) Another “out of order” trace
generated from model11.

Figure 5.4: model 11, package C. Expected order of actions is b(), x(), c().

5.4.2.2 Order of Operations inbetween Stable State Configurations

Discovery The naively expected semantics for the order of actions taken when a transi-
tion fires would be to execute the proper exit actions then the action on the transition and
lastly the proper entry actions. Executing model 11 in package C it was discovered that
the order of the output messages is often out of order and seemingly random, as shown on
Figure 5.4. I could even generate different traces with some slight changes in configuration
options that should not matter.
Furthermore, the execution of model 31 in package F (Figure 5.5) showed that the op-
erations on variables seem to be consistent and correct in each case, even if the order of
output messages are not right. If the ordering of the operations would not be right, i could
end up being either 3, 4 or 2 on the traces in Figure 5.5.

Explanation The intended semantics for synchronous state machines in Gamma is for
the input and output messages to be handled like “signals", as they are part of a syn-
chronous reactive system. The order these signals are changed in does not matter, only
the value they have in the given step of the model.
But doing the same to variable operations would cause the model to be unintuitive and
the result of the operations to be unambiguous, e.g. as in Figure 5.5a, so the variable
operations were implemented to have a fixed and intuitive ordering.

Solution This finding is actually the result of a series of conscious decisions. The solu-
tion is simply to communicate these decisions with the user better in two ways: a) reflect
the non-ordered nature of input and output events in the trace visualization by using
parallel fragments, b) highlight the intended semantics in documentation more.

37

var i: long = 0

S0

entry / output.a()
exit / i := (i + 1)
exit / output.b()

S1

entry / i := (i * 2)
entry / output.c()
exit / output.d()

input.e /
i := (i + 1)

output.x()

(a) model31 (package F, vari-
ant of model11)

statemachineTrace of statemachine

«SUT»
statemachine

output.a()

Statemachine in {S0} with
__id_S0_0_S1_ = false
i = 0

input.e()

Execute

output.b()

output.c()

output.x()

Statemachine in {S1} with
__id_S0_0_S1_ = true
i = 4

(b) Trace generated from
model31.

statemachineTrace of statemachine

«SUT»
statemachine

output.a()

Statemachine in {S0} with
__id_S0_0_S1_ = false
i = 0

input.e()

Execute

output.x()

output.c()

output.b()

Statemachine in {S1} with
__id_S0_0_S1_ = true
i = 4

(c) Trace generated from
model31 with slightly modified
configuration.

Figure 5.5: model 31, package F

It is out of scope for this thesis to discuss if the intended semantics are suitable and
consistent. Yet it might be worth to inspect from time to time if some decisions for
semantics were added organically through implementation and if these were appropriate.

5.4.2.3 Limitation of Parallel Executions

Discovery This finding stems from checking the traces generated by model16 and
model32. The two models, shown in Figure 5.6, are variants of each other. Model16
belongs in package E, as it uses orthogonal regions, while model32 belongs in package F,
as it extends model16 with variables.
The finding itself is that both models generated only a single trace (shown in Figure 5.7).
This means that the state space checked by Theta does not include different orderings of
entering states in these state machines.
This cannot really cause any issues in model16, as the resulting state configuration will be
the same anyways and there are no variables. However, the trace shows that in model32
the possibility that we end up with flag = true is not considered by the model checker.

Explanation The semantical resolution for the issues in model32 in Gamma is that
orthogonal regions are meant to be independent from each other. Gamma even issues a
warning in the editor if instead of separate variables a single flag variable is used: “Both
this transition and the transition between S3 and S4 assign value to the same variable
flag”.
However, actions in states are not checked for the same issue and the message above is
simply a warning; it does not prohibit the modeler in creating the model this way.

38

C1

S1 S2input.f

S3 S4input.f

(a) model16 (package E)

var flag1: boolean = false
var flag2: boolean = false
var flag: boolean = false

C1

S1 S2

entry / flag := flag1

input.f /
flag1 := true

S3 S4

entry / flag := flag2

input.f /
flag2 := false

(b) model32 (variant of model16, package F)

Figure 5.6: model16 and model32, showing orthogonal regions

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {C1, S1, S3} with
__id_S1_0_S2_ = false
__id_S3_1_S4_ = false

input.f()

Execute

Statemachine in {C1, S2, S4} with
__id_S1_0_S2_ = true
__id_S3_1_S4_ = true

(a) Trace generated for model16.

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {C1, S3, S1} with
__id_S1_0_S2_ = false
__id_S3_1_S4_ = false
flag = false
flag1 = false
flag2 = false

input.f()

Execute

Statemachine in {C1, S4, S2} with
__id_S1_0_S2_ = true
__id_S3_1_S4_ = true
flag = false
flag1 = true
flag2 = false

(b) Trace generated for model32.

Figure 5.7: Traces generated for the models on Figure 5.6

39

S0

C1

h
S1 S11

gS2 S22

e

(a) model17 (package E)

e
S0

C1

h

f

S1 S11

gS2 S22

(b) model18 (package E)

Figure 5.8: Models with transitions going into orthogonal regions

The root of the issue is granularity: “temporary” state configurations inbetween “stable”
ones are not considered. This “coarse” granularity is crucial when verifying larger models
as otherwise verification might practically never complete due to ARGs becoming too
large.
Thus when transitions are fired throughout several steps of the state machine, they behave
as expected, i.e. if one of the triggers in model16 is changed to be different, Theta will
include the state configurations S1, S4 and S3, S2 as well.

Solution As we have shown, for verification to be reliable, the orthogonal regions shall
be modeled so that they are independent from each other. But this expectation should be
communicated better with more warnings (or even prohibitions).
At this point it is worth to point out that the model suite of this case study can be used
as a specification by example to help in communicating the presumptions and limitations
discovered here or above in Section 5.4.2.2.

5.4.2.4 Visualizing Transitions Crossing Composite states with Orthogonal
Regions

Discovery There are several minor issues regarding transitions crossing borders of com-
posite states and orthogonal regions.

Explanation Several models exhibited issues, which were traced back to different root
causes.

model17, model18 These models, drawn manually in Figure 5.8, cannot be visualized
by PlantUML, as it prohibits transitions entering a state in an orthogonal region. However
Gamma does not prohibit them and the trace generation can be executed successfully.
The intended semantics of model17 are the same as if the transition with the trigger e
would go to C1 instead. The generated traces have shown that this is what happens.
However, model18 should be prohibited by Gamma.
Based on the traces, model18 is capable of achieving the {C1, S22} state configuration,
shown in Figure 5.9, while model17 behaves as if the transition going to S1 would be going
to C1 instead.

40

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {S0} with
__id_S0_0_C1_ = false
__id_S1_1_S11_ = false
__id_S1_2_S2_ = false
__id_S2_3_S22_ = false

input.e()

Execute

Statemachine in {C1, S1, S2} with
__id_S0_0_C1_ = true
__id_S1_1_S11_ = false
__id_S1_2_S2_ = false
__id_S2_3_S22_ = false

input.g()

Execute

Statemachine in {C1, S1, S22} with
__id_S0_0_C1_ = false
__id_S1_1_S11_ = false
__id_S1_2_S2_ = false
__id_S2_3_S22_ = true

input.f()

Execute

Statemachine in {C1, S2} with
__id_S0_0_C1_ = false
__id_S1_1_S11_ = false
__id_S1_2_S2_ = true
__id_S2_3_S22_ = false

Figure 5.9: One of the traces for model18, enabling the model to reside in only one of
the orthogonal regions

41

C1

S1 S2 S3 S5input.e input.f input.g

S4

(a) model20 (package E), visualized incorrectly

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {C1, S1} with
__id_S1_0_S2_ = false
__id_S2_2_S3_ = false
__id_S3_1_S5_ = false

input.e()

Execute

Statemachine in {C1, S2} with
__id_S1_0_S2_ = true
__id_S2_2_S3_ = false
__id_S3_1_S5_ = false

input.f()

Execute

Statemachine in {C1, S3} with
__id_S1_0_S2_ = false
__id_S2_2_S3_ = true
__id_S3_1_S5_ = false

input.g()

Execute

Statemachine in {S5} with
__id_S1_0_S2_ = false
__id_S2_2_S3_ = false
__id_S3_1_S5_ = true

(b) The single trace of model20

Figure 5.10: Incorrect visualization by PlantUML, uncovered by trace generation.

model20 This model is incorrectly visualized by PlantUML, as based on the textual
representation, S5 is not supposed to be a part of the composite state. But trace generation
instantly reveals the issue by generating a correct trace and displaying the real possible
state configurations as shown in Figure 5.10.

Solution For model20 this is a simple visualization issue, which should be debugged
to display the models correctly. The importance of it comes from the ability to cause
misinterpretation and confusion, especially in more complex cases.
Model17 also uncovers a visualization issue, but this time the feature set of PlantUML
might not be able to cover like this and finding a solution for that will not be that simple.
For model18, there was a missing validation rule, as such crossing transitions should be
prohibited by Gamma in the editor already. Although it was easy to fix, such validation
rules play a really important part in mitigating modeling errors, e.g. typos. If a model
like this is verified, the modeler ends up with a hidden invalid result.

42

Model Number
of traces

Number of traces
with no variables

TrafficLightCtrl 21 10

GroundStation 10sec steps: 5,
5sec steps: 10 5

Spacecraft Timeout 1 (incomplete coverage)
Signaller Timeout 12, only integers excluded: 33

Table 5.2: Result of trace generation on models from real-world examples.

RQ2: What types of issues can the validation process uncover?
The validation process was able to uncover several issues regarding model transformation,
granularity and limitations of the formal representation (including missing executions) and
visualization. It did not only uncover simple implementation bugs, but also limitations of
the generated models that can easily invalidate verification results and require more than
a simple patch of the tool.

5.4.3 RQ3: Traces of Real-World Models

So far the main use case introduced for the algorithm was the end-to-end validation of
model transformations in the verification process. Another possible use case is uncovering
mistakes in real-world models, as explained in Section 3.4.1.
Model developers utilizing the trace generation feature can gain insight on the possible ex-
ecutions of their model, uncovering misunderstandings in semantics, e.g. possible “corner-
case” executions that the modeler did not think of or limitations of the verification the
user did not know about, such as the one reported in Section 5.4.2.3.
Due to its inherent goal, the validation model suite contains only artificial models. To
evaluate the usability of trace generation on real-world models, the prototype was executed
on some models of the tutorials and industrial case studies [46] available for Gamma.
The result of the execution was checked on some synchronous state machines from:

• the Crossroads test/tutorial models2,

• the signaller subsystem of the Railway Traffic Control System case study3,

• and the Simple Space Mission case study4.

Table 5.2 summarizes the results of the execution, while the results per model are detailed
below.

Ground Station The Ground Station state machine is part of the Simple Space Mission
case study and is shown on Figure 5.11. It contains two timers, which trigger some of its
outer transitions.

2https://github.com/ftsrg/gamma/tree/master/tests/hu.bme.mit.gamma.tests/model/
Crossroads

3https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.
casestudy/model/COID

4https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.
casestudy

43

https://github.com/ftsrg/gamma/tree/master/tests/hu.bme.mit.gamma.tests/model/Crossroads
https://github.com/ftsrg/gamma/tree/master/tests/hu.bme.mit.gamma.tests/model/Crossroads
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/COID
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/COID
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.casestudy
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.casestudy

timeout pingTimeout
timeout autoStart

Idle
entry / autoStart := 30 s

Operation
entry / connection.ping()
entry / pingTimeout := 10 s

Waiting
connection.data

control.start timeout autoStart control.shutdown

timeout pingTimeout

Figure 5.11: Ground Station model of the Simple Space Mission case study.

As shown in the second row of Table 5.2, different configurations result in a really different
number of traces. The model transformation to XSTS requires a time step size to be set
for timers. This will increment the relevant timers with this given step size each time
before the model steps. As the outer transition of the Operation state has priority to the
inner transition of Waiting, the inner transition is never fired if the time step is set to 10
seconds, but it is executed in some traces if the time step is smaller.

Spacecraft The other state machine from the Simple Space Mission case study is shown
on Figure A.0.1. This model illustrates the limitations of this trace generation method.
Without excluding the data and batteryV ariable variables the execution never finished,
while with abstraction the coverage of the state space becomes so low that only a single
trace will be generated, as the loops decrementing these variables are not unrolled. This is
detected and reported in the report file generated by Theta. This phenomenon is explained
in detail in Section 4.3.1.

Traffic Light Ctrl This model on Figure A.0.2 depicts the state machine of a traffic
light, capable of working in a normal or a blinking yellow mode. It is a common test model
in Gamma and also includes some meaningless variables.
The number of traces here is higher than for the artificial models, but it is still feasible to
check all of them, especially if the variables are not tracked.

Signaller Figure A.0.3 shows the Signaller state machine. This model features input
and output events with boolean parameters, which significantly enlarge the state space of
the model. It also features two integers as counters, which make abstraction essential, but
contrary to the Spacecraft model, the abstract state space coverage is not violated here.
However, tracking the rest of the variables, which are either boolean or an enumeration
(with 3 possible values) is feasible. While the number of traces here is fairly high, especially
with some of the variables included, they are still feasible to look through, especially with
a good understanding of the model.

44

RQ3: Is trace generation capable of successful executions on real-world mod-
els?
Trace generation was successful for most of the real-world models in the case study and
these executions provided sets of traces appropriate for further manual analysis. The
generated traces seem to be appropriate to illustrate how different aspects, like timers or
priorities are handled and are capable of showing the relevant aspects right on the model
in focus.
There are limitations as well: as in the case of the Spacecraft model, it is possible that
a model has no “right” abstraction level, as with abstraction loss of state coverage is
detected, without abstraction the trace generation will not terminate. Also, the number
and length of traces might not scale well for some larger models and generate too many
traces even with abstraction.

5.5 Discussion

E2E Validation of Semantics Based on the case study, the trace generation algorithm
and the validation approach are deemed successful. The validation model suite did not
completely cover the language elements of Gamma statecharts, but it includes a core set of
these elements and can be easily extended. Determining what coverage should a validation
suite should accomplish and designing a model suite sufficing to that would be a separate
topic and thus this completeness was out of scope for this work.
Even then the validation approach was able to uncover several issues in different parts of
the verification process: not just in the model transformation, but also visualization issues
and limitations in concurrency and granularity. The validation suite and the traces can
also serve in the tool’s documentation as specification by example, informing the users
about such presumptions in an intuitive way.

Real-World Models Although there are limitations in scalability and thus a time limit
for execution is required, the trace generation can also be successful and useful on real-
world models. It is capable of giving insight about semantics, such as priorities, right on
the model itself.

Threats to Validity Internal validity is ensured by carefully following the steps of
validation process. Trace generation was also re-executed on the models and produced the
same input each time. Furthermore, the case studies’ main goal was to show the feasibility
and usefulness of the techniques (which was successful) not the exhaustive and complete
validation of Gamma.
External validity is concerned with how well the results can be generalized. Different ap-
plication domains of model checking have different aspects that make verification difficult
and complex, while this case study is validating only a single modeling language. However
some assumptions can be made on extending it to other domains and languages.
Checking software code will probably require some more work on scalability as the number
and range of variables employed is usually much higher. However, for other engineering
models (e.g. other state machine languages, activity diagrams, process diagrams) trace
generation and the validation process will likely work in a similar manner as here due to
their similarities.

45

Part II

Runtime Monitoring of
Refinement Progress in

CEGAR-based Model Checking

46

Chapter 6

Monitoring Refinement Progress
in CEGAR

In my BSc thesis [1] I mainly focused on portfolios and algorithm selection for model
checkers, including monitoring and intervention as means for a dynamic portfolio.
In Part II of this thesis I would like to revisit this earlier work in greater depth, this
time concentrating not on portfolios, but refinement progress issues in CEGAR and the
monitoring aspect itself.
First, I present an overview about issues in model checking in practice in Section 6.1. I
was also able to dive deeper into how and why the issue of refinement progress halting
is present in CEGAR, which I report on in Section 6.2. Next I revisited my earlier work
about the methods of monitoring and mitigating this issue, updating these techniques and
also giving a deeper analysis in Section 6.3.

6.1 Hardships in Model Checking

Ideally when we are using a model checker we would expect a (hopefully correct) answer,
safe or unsafe, within a given time limit. In reality, this happy path is prone to not
happening and instead we can get many other (unsuccessful) results:

• timeout, i.e. no result within the time limit,

• out of resources, e.g. mainly out of memory or stack,

• different errors, e.g. frontend issues, solver errors and so on.

A lot of the time the reasons for these results are trivial – e.g. more memory is necessary,
the model needs to be changed so the tool can parse it, the solver implementation needs
an update and so forth. Timeouts can often be trivial as well – we just need to give the
tool more time (or computational power) and it will succeed. Hopefully “more” does not
mean months or years.
However, this is not necessarily what’s happening. Model checkers often face the challenge
of tackling an NP-hard problem efficiently for as many real-world models, as possible [34].
Thus they can easily run into executions, where they will never terminate [71] and the
user will have no idea about that.

47

Abstract Counterexample

BuildAbstraction

Refined Precision

Prune Refinement

Safe Unsafe

Initial Precision

ARG

1. A new cex each time

3. More refined in each step

2. Is deterministic

2. Is deterministic

Figure 6.1: CEGAR loop with additional assumptions.

6.2 Problem Statement

From here on the main focus will be on CEGAR instead of model checking in general.
The basic premise of CEGAR is finding the right level of abstraction to prove the system
safe or unsafe, while the state space remains at a manageable size. Thus, we usually start
with a really coarse over-approximation, iteratively refining the precision and thus the
abstraction.

However refinement progress can come to a halt due to information loss, which can
prevent the CEGAR-loop’s convergence to success.

Section 6.2.1 goes into detail about how the CEGAR loop is usually expected to behave,
why this is often not the case and what issues this may cause. Then Section 6.2.2 focuses
on the main issue of refinement progress stopping during the verification.

6.2.1 Assumptions about the CEGAR loop

The CEGAR loop in Figure 6.1 shows how the analysis should progress: the abstraction
and refinement algorithms both work on the Abstract Reachability Graph (ARG), while
also returning either an abstract counterexample or a refined precision to one another.
We are looking at the abstraction and refinement algorithms as black boxes – the CEGAR
loop in this sense is mainly a framework and many different abstraction and refinement
methods can be added to it, including a lot of heuristics [20, 37, 49].
However, we still tend make some general assumptions about this process – Figure 6.1
shows some of these assumptions (numbered 1-4). These assumptions are not stern rules
that have to be obeyed each time – they are “idealistic” expectations and they will not
hold for a lot of CEGAR configurations and heuristics. But if they are not complied with,
then corner cases have to be thought through, otherwise surprising and unwanted results
might arise.

1. Abstraction returns a new counterexample each time As stated above, the
basic premise of CEGAR is the progression of refinement. Refinement is usually based

48

on the abstract counterexample found during the abstraction step. Thus it is sensible to
expect different counterexamples each time for refinement to progress.

2. Abstraction and Refinement are deterministic If these algorithms are not de-
terministic throughout executions and iterations, different unwanted occurrences might
arise, mainly that the model checker itself becomes non-deterministic, e.g. rerunning exe-
cutions might not always result in success and thus benchmarking and debugging the tool
becomes much more complicated. So these assumptions are often foundational for the
usability of the analysis.

3. Precision more refined in each step Again, CEGAR has to find the right abstrac-
tion level, which requires this abstraction level to change. If the precision is not already
right for a proof and it won’t change, the CEGAR execution will not be successful.
Although this by itself only necessitates the expectation that the precision will change at
some point, one still tends to assume that the precision should always change, as the algo-
rithm is supposed to find some important information in each infeasible counterexample.
Again, it is important to highlight, that these are not rules and it might not always be
possible or advantageous to comply with them. However, they introduce the mindset of
the problems and solutions given in the next sections.

6.2.2 Refinement Progress Issues

If the abstraction level of the precision can not progress during the analysis, i.e. the
precision is not changed during the refinement step of the CEGAR loop, it can cause the
progress of the analysis to come to a halt and get stuck in an “infinite CEGAR-loop”.
To illustrate how this can happen, the assumptions from Figure 6.1 will be used.

• Assumption 2 expects the inner algorithms to be deterministic. This should be
possible to implement, so we can assume that without a technical error or an explicit
design choice this is generally true.

• Assumption 1 and 3 are connected in the sense that if one is compromised at some
point, then the other can also get compromised from the next iteration onwards.
However, these assumptions are not trivial to guarantee, so in this section we will
examine the causes and consequences of that.

The determinism of the algorithms means that for the same input they should always
produce the same output. An “opposite” of that would be to expect that for any two
different inputs, the algorithms always return different outputs. However, this is not
desirable, e.g. in explicit abstraction, if two different counterexamples are infeasible due to
the same variable, then we want to add that same variable to the precision as refinement.
Assumption 1 and 3 realize something similar, but more relaxed and beneficial: in the
iterative process of the CEGAR loop, where the precision is iteratively refined, the algo-
rithms should give different and progressing outputs to the inputs they get. Figure 6.2a
illustrates this: the refinement iteratively adds new variables (X, Y, Z) to the precision
based on the last counterexample, which leads the abstraction to new counterexamples.

49

Counterexample 1

Counterexample 2

Precision 1 Counterexample 3

Precision 2

Precision 3

track: X

track: X, Y

track: X, Y, Z
...

(a) Ideally the iterations of the CEGAR loop
progress towards the right abstraction level.

Counterexample 1

Counterexample 2

Precision 1

Precision 2
track: X

track: X, Y

...

(b) Instead of progress, execution might run
into an infinite CEGAR loop.

Figure 6.2: Demonstration of ideal and problematic CEGAR executions with explicit
abstraction.

This progression sounds reasonable to expect, but progress is not always possible in prac-
tice. The most common reason for that is the limited expressive power of abstract domains
(see Section 2.2.1.1) and information loss due to different heuristics.

Example of No Progress The typical example for that is the explicit domain: the
precision contains variables and the value these variables take up is tracked. However,
the value of a variable can be unknown (i.e. it could hold more than one value). Thus, in
those states it does not matter that we added it to the precision or not.
Figure 6.2b shows the main issue with this: we add Y as it plays an important role in
showing that counterexample 2 is infeasible, but if we can not track its values in some
states, we might end up on the same counterexample over and over and the progression of
the CEGAR loop can come to a halt. Keep in mind, that for more complex configurations,
e.g. with lazy pruning of the ARG, this infinite loop might be several counterexamples
long.
Most other abstract domains, such as Cartesian predicate abstraction, might have greater
expressive power, but they can still suffer from this issue. Although other reasons might
also be possible, expressive power seems to be by far the most common culprit.
In the next section I would like to introduce a technique which tries to tackle this issue
with runtime monitoring.

6.3 Improved Detection and Mitigation

In my BSc thesis I realized a technique of detecting and possibly mitigating this issue with
runtime monitoring [1], which seemed promising, especially for the explicit domain. Since
then I revisited these techniques, deconstructing my earlier work and uncovering possible
issues, thus a formalization of the updated technique is due and is given in this section.
In this work I separated the runtime monitoring method to different, separately usable
components, making it configurable, which will be a crucial part for the analysis below
and in the evaluation as well:

50

• detection and mitigation are now separate components, as different mitigation meth-
ods might be preferred to the one introduced in this chapter,

• and tracking only the counterexamples or also the ARGs and precisions will also be
separated.

Below I introduce the resulting components and detail the causes and results of this
deconstruction.

6.3.1 Detection

The current version of the monitoring algorithm is formalised in Algorithm 6.1. It is
added to the CEGAR loop and requires only a minor modification of parameters for the
abstraction and refinement, which might be available in the implementation already. The
parts realizing the detection of halting refinement progress are highlighted in orange.

Algorithm 6.1: Refinement Progress Detection in the CEGAR loop.
input : l0: initial location

lE : error location
D = (S,⊥,⊑, expr): abstract domain with locations
π0: initial precision
T : transfer function with locations

output: safe or unsafe
1 ArgSet := ∅ // ARG and precision pairs that occurred together that were used in

the refiner (optional)
2 CexSet := ∅ // Infeasible counterexamples, that were used for refinement already
3 ARG := (N := (l0,⊤), E := ∅, C := ∅)
4 π := π0
5 while true do
6 // Minor abstraction modification, so that it returns the cex found
7 result, ARG,cex:= Abstraction(lE , D, π, T) ○ Algorithm 6.2
8 if result = safe then return safe
9 else if cex ∈ CexSet and <ARG, π> ∈ ArgSet then

10 return inconclusive
11 else
12 < ARGlast, πlast >:=< ARG, π >
13 // Minor refinement modification required, so that we can explicitly add

what counterexample to use
14 result, π, ARG := Refinement(ARG, lE , π,cex))
15 if result = unsafe then return unsafe
16 CexSet← cex
17 ArgSet←< ARGlast, πlast > // We store the ARG and precision in which

the counterexample used in refinement was found

The monitoring method presented in Algorithm 6.1 works the following way:

• An empty CexSet and ArgSet is initialized, which will store the infeasible coun-
terexamples that were already used for refinement earlier (in practice we store the
hashes of these structures).

51

• When abstraction returns with an abstract counterexample, we check if the tracked
structures are already present in the sets, i.e. if we used them for refinement before;
if they are, the analysis is stopped and deemed inconclusive, as we will not be able
to progress with refinement in this case.

• If the counterexample and other structures are “new”, we proceed to use it for
refinement and if refinement deems it infeasible, we add the counterexample to the
CexSet and the ARG and precision in/with which it was found to the ArgSet
afterwards.

Some minor parameter modifications of abstraction and refinement are made: the explicit
output or input of the abstract counterexample is required. This, however, should be easy
to do in practice, if not already done. These algorithms do not need to be modified in any
other way for the detection component.

6.3.1.1 Analysis

Improving Verification Results It is important to see that this extension of the
CEGAR loop by itself will not be able to raise the number of successful analyses. However,
it can cut down on the number of timeouts, returning with an inconclusive result much
earlier on. This can already save immense amounts of time, but if it is is paired with any
kind of mitigation heuristic, either inside the analysis (e.g. the technique below) or outside
the analysis (e.g. a sequential portfolio of different analyses), the number of successfully
verified input models can also rise.

Tracking different Structures In Algorithm 6.1 abstract counterexamples, ARGs and
precisions are all stored and tracked. However, based on Section 6.2, tracking counterex-
amples by themselves should be enough to recognize if we are in an infinite CEGAR loop
or not.
Yet in practice some CEGAR configurations might be able to mitigate this issue sometimes,
e.g. if lazy pruning is used, the abstraction might be able to “pull itself out” from this
situation in several iterations, as shown in Figure 6.3.
In Figure 6.3 we assume that the precision does not change throughout the three iterations.
The red counterexample on the left is found first, but it is infeasible and pruned back the
whole way. It is then rebuilt again in the next iteration, but the other branch of the
ARG also gains a new state. The right counterexample is found after iterations of no
precision or counterexample change, because it is slowly able to build up parallel to the
wrong counterexample.
Thus the monitoring technique can be deemed a heuristic technique, in which we have to
define at what point we would like to deem the CEGAR execution hopeless and inconclu-
sive. Some examples are listed below.

• Tracking only counterexamples is an over-approximation for lazy abstraction with
the BFS search strategy, i.e. it might produce inconclusive results, where lazy pruning
could have “mended” the lack of refinement progress in a few iterations.

• On the other hand, tracking counterexamples only might be enough for lazy abstrac-
tion with a deterministic DFS search strategy, i.e. in that case lazy abstraction will
not be able to mitigate itself the same way as with BFS.

52

3

1
2

Init

4
Err1

Pruned here

3

1 Init

Err1
2

Pruned here 1 Init

2
Err2

Iteration 1,
after abstraction

Iteration 2,
after abstraction

Iteration 3,
after abstraction

Figure 6.3: Illustration of how lazy pruning with BFS might be able to make progress
even if the counterexample and precision remain the same. The numbers on the arrows
show in what order the states are found.

• Also, if the “self-healing” situation of Figure 6.3 is generally deemed slow and rare,
tracking counterexamples only and “false detection” of these situations can actually
be worth it for the faster detection of no refinement progress in other cases.

Thus tracking only the counterexamples might be an over-approximation, but it might
easily be the better option in practice, especially if paired with mitigation or other con-
figurations. New configurations, which require the tracking of even more structures might
also be possible, although in this work I will only discuss and evaluate the above two
options.

6.3.2 Mitigation

In my earlier work I designed a fairly simple mitigation technique, but it was not separated
from detection. It can be paired with other techniques, e.g. portfolios or it might be
omitted entirely in favour of other techniques, as it is now completely separated from the
detection component. However, the version in my earlier work also had a hidden issue,
which will be detailed and fixed in Section 6.3.2.1.
This mitigation heuristic modifies the abstraction algorithm. The core idea is the mod-
ification of the stop criterion of ARG building so that instead of stopping at the first
counterexample, the algorithm stops at the first “new” counterexample.
Algorithm 6.2 shows the modifications with the darker, green highlights, while the lighter
highlights are the modifications that were already necessary for the detection component.
The set of counterexamples (CexSet) and optional ARGs and precisions (ArgSet) are
already familiar from Section 6.3.1. They are necessary for the mitigation as well, so
they become part of the input for abstraction. When finding an error location and thus a
counterexample, the sets are used to check if we have found a new counterexample or not.
This time finding a known counterexample will result in the continuation of the ARG
building instead of stopping the analysis with an inconclusive result, preventing the halt
of refinement progress by finding a new ARG.

53

Algorithm 6.2: Abstraction algorithm with refinement progress mitigation.
input : ARG = (N,NnotCovering, E, C): partially constructed abstract

reachability graph
lE : error location
DL = (SL,⊥L,⊑L, exprL): abstract domain with locations
πL: current precision
TL: transfer function with locations
CexSet: A set of infeasible abstract counterexamples that were already

found and refined earlier.
ArgSet: ARG and precision pairs that occurred together with

counterexamples that were used in the refiner (optional)
output: (safe or unsafe, ARG, cex)

1 waitlist := unmarked nodes from N
2 while waitlist ̸= ∅ do
3 l, s := remove from waitlist
4 cex = ((l1, s1), op1, . . . , opn−1, (ln, sn)) := path to unsafe node (with lE)
5 if l = lE and not (cex ∈ CexSet and <ARG, π> ∈ ArgSet) then
6 return (unsafe, ARG, cex)
7 else if l = lE then
8 // Remove covered-by edges
9 for ∀(li, si) ∈ cex do

10 if ∃(l′, s′) ∈ arg : {(l′, s′), (li, si)} ∈ C then
11 C := C \ {(l′, s′), (li, si)}
12 NnotCovering ← (li, si)
13 coverOrExpand(ARG, l, s, T, waitlist, DL, πL) // not detailed, usual CEGAR

steps
14 if ∃(lE , s) ∈ N then
15 return (inconclusive, ARG, None)
16 else
17 return (safe, ARG, None)

Finding a new counterexample might not always be possible, i.e. when the waitlist runs out
without finding a new counterexample. With some further proofs of soundness it might be
possible to conclude safety in that case, but the current version of this method will either
conclude unsafe if finding a feasible counterexample (in refinement), or inconclusive (line
15). For this to work, line 9 and 10 of Algorithm 6.1 were moved to the end.

6.3.2.1 Issues with Infeasible Traces

The parts of the mitigation algorithm described above did not change much since my
earlier work. However, line 7-12 of algorithm 6.2 were not explained yet.
Usually abstraction stops at the first counterexample. Even if that is not true, infeasible
counterexamples, or at least some postfix of them (see lazy pruning [49]), are pruned back
before the next iteration of ARG building.
However, this mitigation technique does not comply with the assumption that there are no
infeasible traces in the ARG when it is built: ARG building does not necessarily stop at
the first counterexample and only one counterexample will be refined and pruned, leaving

54

Init

Err1

SS'

Err2

Figure 6.4: The issue with covered-by edges going from infeasible traces.

infeasible traces in the ARG behind, which might cause issues later on or even in that
iteration, as the infeasible trace can cover other ARG states outside that infeasible trace.
An example of such an issue is shown in Figure 6.4. The figure shows and oversimplified
ARG without labels that contains two traces. The infeasible counterexample on the right
was found first – it’s infeasibility stems from the ARG states before S contradicting each
other. However, we know from earlier that this trace is infeasible and using the mitigation
technique build the ARG further on. Then we find an S′ state on another route, but
this state can be covered by S, so instead of expanding it further a covered-by edge is
added and the feasible counterexample to Err1 is never found and the model might even
be considered safe in the end, which is false.
Keep in mind, that lazy pruning is not necessary for this example to play out, i.e. even if
the ARG is built up from the initial node in each iteration, the analysis might have rebuilt
the same counterexample again in lack of refinement progress.
The root of the issue was that the ARG by itself is not prepared to handle infeasible
counterexamples remaining in it. The simplest solution is adding the possibility to “mark”
known infeasible traces and preventing coverage of other states by the states in these traces.
In algorithm 6.2 line 7-12 implements this extension by maintaining NnotCovering, adding
these marked nodes to it and also removing the already existing covered-by edges to them.
Nodes added to NnotCovering will be forbidden from covering other nodes. In practice this
might instead be an attribute of the ARG nodes instead of a separate set in the ARG, but
both achieves the same result.

What Mitigation to Use Again, it is important to see that this mitigation technique
is a heuristic technique and will not always achieve better results than without it, e.g. if
we use explicit analysis in a model with loops, it might prevent refinement progress from
stopping, but it will not help with a large amount of infeasible counterexamples due to
the loops. In that case using another abstract domain instead of waiting for the explicit
analysis might be a better idea.
Chapter 7 will show how detection and mitigation perform in practice with different con-
figurations.

55

Chapter 7

Comparison of Runtime
Monitoring Techniques on
Software Benchmarks

This chapter conducts an experiment defined to evaluate the runtime monitoring tech-
niques introduced in Chapter 7. Section 7.1 details the design of this experiment from
research questions and configurations used to implementation details and the execution
environment. Then in Section 7.2 the results of the verification executions are evaluated
based on the research questions introduced beforehand. Besides concluding this chap-
ter Section 7.3 also accounts for the threats to validity in this evaluation.

7.1 Experiment Design

The following sections introduce the necessary details about experiment design.
The subject of the experiment are the different configurations of the monitoring techniques
introduced in Chapter 6, evaluated through their implementation in Theta [69].

7.1.1 Implementation

The runtime monitoring techniques and the changes made to them in this work are im-
plemented in the XCFA CLI tool of the Theta [69] model checking framework. The
implementation is open source and available on github1. Different configurations can be
set by using the –-cex-monitor option and setting it to one of the following values:
DISABLE, CHECK, CHECK_ARG, MITIGATE, MITIGATE_ARG. This will enable the separate
benchmarking of all the components shown in Chapter 6.
The monitoring configurations implement the following: DISABLE serves as the baseline
without any of my additional techniques, CHECK and CHECK_ARG only implement detection,
but not mitigation and track only the counterexamples or also the ARGs and precisions,
respectively. Additionally, MITIGATE and MITIGATE_ARG also implement the mitigation
technique introduced in Chapter 6.

1https://github.com/ftsrg/theta/tree/progress-check-refactor

56

7.1.2 Input Models

In this experiment the input models for verification will be the benchmarking programs of
the International Software Verification Competition (SV-COMP) [12]. SV-COMP provides
the de-facto standard and probably the biggest benchmarking set for C verifiers.
In this experiment I will use the ReachSafety category, which provides C programs with a
reachability property. The configuration files also contain if the programs are believed to
be safe or unsafe, thus false results will also show. The exact version used can be found
on gitlab2.
This benchmarking set contains 6417 tasks (programs), of which Theta is able to parse
4097 programs (thus the rest will be omitted). These include different subcategories
concentrating on different language elements of C, such as bitvectors, loops, arrays, floats
and so on. The variation in size of the program is also large: some of the programs are
small, i.e. easily readable, even less than 50 lines, some are really large, i.e. more than
10 000 lines.

7.1.3 Research Questions

RQ1: How well do the detection and mitigation techniques perform if using
an abstract domain with low expressive power? The domain to used here will be
the explicit domain, which I expect to be prone to the refinement progress issues. As the
detection and mitigation components are now separate, they can be separately evaluated.
As detailed in Section 6.3.2, it is not trivial if it is worth letting the analysis run further
with mitigation or if it might be more advantageous to start another CEGAR configuration
right away instead.

RQ2: How uncommon it is for refinement progress to halt if using an abstract
domain with a large expressive power? Although the Cartesian predicate domain
has a much larger expressive power, it is still possible to run into the refinement progress
issue. The main interest here if the number of executions with this issue is negligible or
not.

RQ3: What differences appear inbetween results of tracking only the coun-
terexamples and tracking the ARGs and precisions as well Tracking only the
counterexamples is a simpler solution, which is much easier to implement without errors
and might be easier to extend with new techniques. However, when only tracking coun-
terexamples, false positives can come up, especially with using configurations like lazy
pruning, which might be able to “mend” itself (see Section 6.3.1.1).

7.1.4 CEGAR Configurations

For this evaluation I chose 3 different CEGAR configurations, each of which is executed
with at least 2 of the 5 possible monitoring options, resulting in 9 combinations. The
option “mitigate_arg” was however not used in this evaluation, as it was not necessary
for answering the proposed questions.

2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/
ecc7d14aa0715c3f51146c3ffa05048ce5e60be7

57

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/ecc7d14aa0715c3f51146c3ffa05048ce5e60be7
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/ecc7d14aa0715c3f51146c3ffa05048ce5e60be7

Predicate
Analysis

Explicit Value Analysis

Full Pruning Lazy Pruning
C

E
G

A
R

op
ti

on
s Abstract

Domain
Cartesian Predicate Explicit Explicit

Pruning
Strategy

Full Full Lazy

Refinement Backwards Binary Interpolation
Search
Strategy

ERR ERR BFS

Fa
ct

or
s Runtime

Monitoring
disable,
check

disable,
check,
check_arg,
mitigate

disable,
check,
check_arg

Relevant
RQs

RQ2 RQ1, RQ3 RQ3

Table 7.1: Summary of the 9 combinations executed for this experiment. Each column
shows a CEGAR configuration, while the rows show the chosen CEGAR and monitoring
options. Throughout the experiment each CEGAR configuration was executed with the
values in the runtime monitoring row for comparison.

The 3 chosen CEGAR configurations all use a generally well performing refinement tech-
nique and either error location based search, or in case of lazy pruning, BFS (as explained
in Section 6.3.1) [49]. Beside these they only differ in the abstract domain and/or the
pruning strategy as shown in Table 7.1.

7.1.5 Execution Environment

The experiment was executed on the cloud infrastructure of the Faculty of Electrical
Engineering and Informatics. The load was distributed inbetween around 70 instances of
the same virtual machine template, running Ubuntu 22.04 with 3 CPU cores and 15GB
of RAM.
Execution of the tasks was conducted by BenchExec [23], the open-source, reliable bench-
marking framework developed for and used at SV-COMP. In this framework the memory
limit was set to 15GB of RAM (the maximum available amount), while the time limit was
set to 500 seconds of CPU time.
Using virtual machines for the experiment was not ideal, but necessary. Some amount
of deviation in time is expected even when not executing the tool on virtual machines
as well, as Theta is implemented in Java and the garbage collector is executed in a non-
deterministic manner. In general, we experienced no large deviations in results when
re-running smaller parts of the experiment.
But the executions for some tasks with the same combinations might still output different
results due to deviation in time, e.g. the same task might be solved once in 490 seconds,
but it might not be solved under 500s the next time (but would be solved in a few more
seconds).

58

Thus all 9 combinations were executed twice and any task, which had different results
inbetween the two executions was removed from the benchmark set.

7.2 Results

In this section the results of the experiment are detailed by going through each research
question and examining relevant data.
The resulting dataset is available freely on Zenodo [76] along with the executable and the
Jupyter Notebook used to process and plot the results.

7.2.1 Data Preprocessing

Some preprocessing was necessary to analyze the resulting data:

• results of different technical errors (solver, generic, etc.) were merged into a single
”ERROR“ status, as the exact type of errors are out of scope for this experiment,

• as described in 7.1.5, the combinations were run twice and input tasks with different
results inbetween the two runs in any of the combinations were removed everywhere
(235 tasks were removed in this step),

• right now there is a single task that Theta gives the wrong result to (false negative),
which is a known, but for now unsolved issue, so this task was removed (1 task was
removed in this step).

Due to these steps, the analysis below was carried out on executions on 3843 input pro-
grams for each combination.
Abbreviations of output in Table 7.2 and all similar tables mean the following:

ERR Technical Error (e.g. solver error)

OOM Out of Memory

T/O Timeout

False Success, input is unsafe

True Success, input is safe

Stuck Stopped due detection of lack of refinement progress

7.2.2 RQ1 - Explicit Analysis

To answer RQ1 we will compare results from 3 runtime monitoring options combined with
the explicit value analysis with full pruning. The number of different results is shown
in Table 7.2.

• Compared to the baseline, the number of timeouts is much lower if only detection is
used and somewhat lower, if mitigation is used.

• With the exception of a few input tasks (which are present due to technical errors in
Theta), the number of successful (false or true) results is the same with and without
detection and higher if mitigation is used.

59

output disable check mitigate
Err 967 901 1007
OOM 4 4 4
T/O 2460 1748 2310
False 194 194 285
True 218 217 217
Stuck 0 779 18

Table 7.2: Overview of the explicit analysis with full pruning results using no monitor-
ing/detection/detection and mitigation.

disable
ERR OOM T/O False True

ch
ec

k

ERR 901 0 0 0 0
OOM 0 4 0 0 0
T/O 0 0 1748 0 0
False 0 0 0 194 0
True 0 0 0 0 217
Stuck 66 0 712 0 1

Table 7.3: Number of all result pairs for the baseline (disable) and detection (check)
with explicit analysis and full pruning.

7.2.2.1 Detection for Explicit Value Analysis

It was already visible that the runtime detection uncovered a substantial amount of cases,
where refinement progress was halted and stopped these executions with an inconclusive
(“Stuck”) result.
What is not visible on the table above is what result the verification would have given to
these tasks if not runtime monitoring was used. Table 7.3 answers this question as well.
The columns depict result values for the baseline executions and the row depict result
values with detection – the numbers in the cells show how many input tasks have taken
up this combination of results for these two combinations.
The majority of tasks stopped by the detection would have been timeouts (712), while
some would have been technical errors (66). Most of the rest of the results are the same
in both cases.
There is only a single task that would have a successful (true) result without the detection.
After manually analysing this task, I found that it was a rare case of the SMT solver being
non-deterministic inbetween iterations – with other words solving this task was a “lucky
error”.

7.2.2.2 Mitigation for Explicit Value Analysis

Table 7.4 is similar to Table 7.3, but it compares the baseline to the mitigation instead.
The values in the two tables are somewhat similar, however there are some key differences:

60

disable
ERR OOM T/O False True

m
it

ig
at

e

ERR 964 0 43 0 0
OOM 0 4 0 0 0
T/O 2 0 2308 0 0
False 1 0 90 194 0
True 0 0 0 0 217
Stuck 0 0 17 0 1

Table 7.4: Number of all result pairs for the baseline (disable) and mitigation (mitigate)
with explicit analysis and full pruning

• there are only 17 tasks that were stopped be the monitoring, while above there were
712,

• but the number of successful, false results is now 90 instead of 0 – which is a 122%
improvement in number of successful verification compared to the baseline,

• unfortunately the number of “remaining” timeouts, i.e. where both timed out, also
went up from 1748 to 2308.

7.2.2.3 Differences in Execution Time

After examining the results of the verification executions, there is another variable worth
investigating: the wall time of executions. As described in Chapter 6, the advantage of
the runtime detection is sparing time by stopping the execution instead of it timing out.
However, this is only really advantageous, if the execution is stopped fairly early.
Figure 7.1 shows the density of tasks stopped by the monitoring in 20 second interval bins.
Density in this case is calculated by dividing the number of occurrences in the given bin
by the product of the width of the bin (20) and the total number of data points.
Both combinations stop the executions mostly in the first 20 seconds, but with mitigation
there are some bins with high density much later on as well – in these cases mitigation
probably tried to “save” the execution, but failed.
In the end, using detection only was way faster, as the summarized walltime of the baseline
execution was 332 hours, while it was 314 hours with mitigation and only 244 hours with
detection, which is 73.5% of the baseline execution time.

RQ1 Conclusion Choosing what runtime monitoring methods to use is not an easy
task and has to be done on a case by case basis. However, the following pointers can be
utilized:

• if time is a really important factor, using runtime detection, but not the runtime mit-
igation, might be more beneficial, especially if other techniques, such as a sequential
portfolio, trying other CEGAR configurations afterwards is also used,

• if time is not such an important factor, using the mitigation technique will be able
to provide an improvement in the number of successes, but most likely only a much
smaller improvement regarding execution time.

61

0-2
0
20

-40
40

-60
60

-80
80

-10
0

10
0-1

20

12
0-1

40

14
0-1

60

16
0-1

80

18
0-2

00

20
0-2

20

22
0-2

40

24
0-2

60

26
0-2

80

28
0-3

00

30
0-3

20

32
0-3

40

34
0-3

60

36
0-3

80

38
0-4

00

40
0-4

20

42
0-4

40

44
0-4

60

46
0-4

80

48
0-5

00

Walltime Intervals (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
De

ns
ity

How early refinement progress issues are uncovered during verification

check
mitigate

Figure 7.1: Histogram showing how early verifier executions are stopped due to lack
of refinement progress, if using detection only (check) or mitigation as well (mitigate).
Density is calculated for 20 second bins and normalized.

7.2.3 RQ2 - Predicate Analysis

The results for Cartesian predicate analysis are summarized in Table 7.5. There are only 9
cases of refinement progress detection stopping the analysis (“Stuck”). One is the already
known input program, which induces solver non-determinism with the explicit analysis as
well, as described above in Section 7.2.2.1.
There were only 2 input programs that got caught by detection and timed out without it,
based on which we can fairly safely assume that refinement progress really stopped.
However the other 6 input programs ended up in different technical errors without detec-
tion. This is unfortunate, as this way we can not be sure if they would have timed out or
would have been successful without technical issues.

RQ2 Conclusion All in all, compared to the 713 executions of explicit analysis (see Ta-
ble 7.3) that were caught and stopped, the number of executions caught here is negligible.
These results strongly indicate that the main issue behind refinement progress stopping
is low expressive power and thus the issue barely concerns abstract domains with larger
expressive power. Of course, it is possible that heuristics with large information loss exist
that could cause this issue as well, but in this experiment and in Theta this seems unlikely.
However, as the results of the baseline were not affected negatively by the monitoring
techniques, it is unnecessary to turn it off. It might even be beneficial when experimenting
with new configurations to see if timeouts are hiding an “infinite CEGAR-loop” or not.

62

disable
ERR OOM T/O False True

ch
ec

k

ERR 1112 0 0 0 0
OOM 0 4 0 0 0
T/O 0 0 2069 1 0
False 0 0 0 232 0
True 0 0 0 0 414
Stuck 6 0 2 0 1

Table 7.5: Results of Cartesian predicate analysis: number of all result pairs for the
baseline configuration (disable) and monitoring (counterexamples only) (check).

7.2.4 RQ3 - Tracking ARGs

Figure 7.2 shows the number of different outputs for the explicit analysis with lazy pruning
and with full pruning as well – this time only detection is experimented on.
Comparing the results of explicit analysis with lazy and full abstraction, the plots look
somewhat similar: there is again a large number of executions stopped by detection due
to refinement progress issues – however, the number of stopped executions is significantly
higher with lazy pruning, which is surprising. For a yet unknown reason lazy pruning
seems to be more prone to this issue than full pruning.
The research question however was the difference inbetween results with and without
tracking the ARGs and precisions when using lazy pruning. As expected and shown
in 7.6a, there were 0 false positive detections, i.e. input tasks that were “Stuck” with
check, but successful (False or True) with checkarg, when using full pruning. However,
there were only a 4 false positives with lazy pruning as well, which might be negligible in
most cases (shown in 7.6b.
Another cell in the tables needs explanation, which is the Stuck/Timeout (check/checkarg)
combination, which has the value 3 and 6 for the tables. With lazy pruning it would be
possible that the execution timed out while trying to “mend” itself, but for full pruning
this should not be possible. However, manually checking the logs for these 9 executions,
the explanation is much simpler: the “Stuck” results were given fairly close to timeout
and tracking the ARGs was a bit slower and timed out before giving the same result. The
“mirrored” values in the tables are 0, which allows the assumption to a really slight extra
overhead when tracking more than just counterexamples.

RQ3 Conclusion False positive detections for lazy pruning are possible, but not com-
mon. If false positives are absolutely unacceptable, e.g. when trying to verify a single
input task and getting a successful result is the main priority, it might be worth to track
everything, but it typically makes little difference, while also adding a slight overhead.
However, the experiment shows that false positives are possible and might be possible or
even more common with other CEGAR configurations as well, as lazy pruning is just an
example of many other heuristics and options.

63

checkarg
ERR OOM T/O False True Stuck

ch
ec

k

ERR 901 0 0 0 0 0
OOM 0 4 0 0 0 0

T/O 0 0 1745 0 0 0
False 0 0 0 194 0 0
True 0 0 0 0 217 0

Stuck 0 0 3 0 0 776

(a) Explicit abstraction with full pruning with/without tracking the ARGs and precisions

checkarg
ERR OOM T/O False True Stuck

ch
ec

k

ERR 896 0 0 0 0 0
OOM 0 4 0 0 0 0

T/O 0 0 1265 0 0 0
False 0 0 0 178 0 0
True 0 0 0 0 167 0

Stuck 0 0 6 4 0 1320

(b) Explicit abstraction with lazy pruning with/without tracking the ARGs and precisions

Table 7.6: Number of all result pairs with explicit analysis and lazy/full pruning, with-
/without tracking the ARGs and precisions

7.3 Conclusion

Based on the results, the runtime detection technique can significantly decrease the number
of timeouts and thus decrease the overall execution time of verification benchmarks if using
explicit value analysis.
However, on abstract domains with higher expressive power, such as predicate analysis, it
might not add significant improvements, as refinement progress rarely halts in those cases.
Furthermore, the detection technique proved to not be prone to false positive detections
with the analyzed CEGAR configurations, even if only tracking counterexamples.
The mitigation technique might help in solving more tasks, but spares much less time than
just using detection. Using a sequential portfolio of more CEGAR configurations might
prove more useful instead in some cases.

7.3.1 Threats to Validity

Internal Validity The accuracy of measurements is insured by using the BenchExec
framework [23]. Further stability is accomplished by executing the same experiments twice
and removing input programs that the tool achieved deviating results on. Some deviation
and uncertainty might still be present regarding execution time and memory consumption,
but these metrics were rarely or not at all used in the evaluation.

Construct Validity Construct validity ensure that the right metrics are used to mea-
sure the examined property. The point of verification is to successfully prove safety or fault
in the input program, thus the output of the analysis is the most important metric most

64

of the time. In this case, other outputs, such as the detection of no refinement progress,
might also be deemed a success, depending on what we want to achieve, but this does
not change the fact that the main metric is the output of the tool. A secondary metric
is execution time, as the time spared by stopping “hopeless” analyses can be immensely
helpful in practice.

External Validity External validity is concerned with how well the results can be gen-
eralized. This is an important topic regarding this evaluation, as the number of CEGAR
configurations used is only a small sample of all the possible ones. However, many of the
main conclusions shows the possibility of some events, rather than their certain occur-
rence, i.e. it is shown that the technique can be quite successful with at least one abstract
domain. However, further generalizability would probably only be possible with more
broad benchmarks on more configurations.

65

ER
RO

R

OU
T

OF
 M

EM
OR

Y

TI
M

EO
UT

fa
lse tru

e

ve
rif

ica
tio

n
st

uc
k

Output

0

500

1000

1500

2000

2500

Nu
m

be
r o

f O
ut

pu
ts

89
6

4

12
65

17
8

16
7

13
30

89
6

4

12
71

18
2

16
7

13
20

96
7

4

25
19

18
2

16
8

0

Explicit Analysis with Lazy Pruning

check
checkarg
disable

(a) Results of explicit analysis with lazy pruning, without detec-
tion (disable), with detection while tracking only counterexamples
(check) or ARGs and precisions as well (checkarg)

ER
RO

R

OU
T

OF
 M

EM
OR

Y

TI
M

EO
UT

fa
lse tru

e

ve
rif

ica
tio

n
st

uc
k

Output

0

500

1000

1500

2000

2500

Nu
m

be
r o

f O
ut

pu
ts

90
1

4

17
45

19
4

21
7

77
990

1

4

17
48

19
4

21
7

77
6

96
7

4

24
57

19
4

21
8

0
Explicit Analysis with Full Pruning

check
checkarg
disable

(b) Results of explicit analysis with full pruning, without detec-
tion (disable), with detection while tracking only counterexamples
(check) or ARGs and precisions as well (checkarg)

Figure 7.2: Plots comparing results of explicit analysis with lazy or full pruning

66

Part III

Related Work and Conclusion

67

Chapter 8

Related Work

8.1 The Landscape of Verification Tools

Both parts of this work build upon the abstraction capabilities of the tools used, thus it
is important to examine how common abstraction is in verification tools.
There are a wide array of formal verification tools available for many different application
domains. Due to the need for comparative evaluation, many domains have benchmarking
competitions at their disposal, showcasing the state of the art tools and techniques.

SV-COMP [12][11] The International Competition on Software Verification (SV-
COMP) might be the largest of these competitions to date. It was specifically created for
software verifiers and had 33 actively competing tools in 2022. Based on their report [12],
11 of these tools use Counterexample-guided Abstraction Refinement (CEGAR) [32], 8
use lazy abstraction, 9 of the tools use Explicit-Value Analysis and 5 use ARG-Based
Analysis. There are several overlaps inbetween these properties.

Model Checking Contest [54] The Model Checking Contest (MCC) benchmarks ver-
ification tools on Petri net models. They had 7 actively competing tools in 2021. They do
not have such a detailed report on the properties on the tools, but abstraction and explicit-
value techniques seem to be present in the reported techniques of several tools [54]. One
of the competitors is LoLA [67][75], which was already introduced in Section 4.4.2.1.

Hardware Verification Competition The hardware verification competition1 exe-
cutes benchmarks on hardware models mainly in the And-Inverter Graphs (AIG) format
with 11 submitted tools in the last edition of the competition in 2020. Based on their
report slides, some tools also apply abstraction here as well. For example nuXmv [28],
one of the de facto standard tools, implements CEGAR and already has a feature called
“computing reachable states”2.
As shown in this section, abstraction and related techniques appear throughout all the
different and domains in a significant amount of tools. While benchmarking competitions
compare tools and give valuable feedback to tool developers, they are limited to only a
few input model types and languages (e.g. C software, Petri nets).

1http://fmv.jku.at/hwmcc20/#results
2https://usermanual.wiki/Document/nuxmvusermanual.465943104/html

68

http://fmv.jku.at/hwmcc20/#results
https://usermanual.wiki/Document/nuxmvusermanual.465943104/html

8.2 Test Generation with Model Checkers

Fraser et al. [41] describes several tools and papers about generating test cases with model
checkers. Many of the works cited in this survey [39, 43] and even more recent works [56]
differ greatly from my approach in that they use model checkers as black box tools, gen-
erating properties based on the test generation goals and feeding these properties to the
tool as a verification problem, using the resulting counterexample as a test case.
In a subsequent paper, Fraser et al. [40] describes several drawbacks of this approach, e.g.
a model checker might prioritise counterexamples that are easy to understand, but make
no good test cases. This work states that model checkers could generate better quality test
suites with some added techniques focusing on test generation (e.g. abstraction for testing,
constraints and prioritization of counterexamples), i.e. not using the model checker as a
completely black box tool.
Although my work generates traces with a different goal in mind, it relates to the realiza-
tions of these issues. When the model checker is seen as a black box, typically the whole
verification process is utilized for the generation of a single test case, making several state
space traversals necessary for the test suite. Instead, this work utilizes lower level features
of the tool, such as ARG building, making the tool capable to generate all the traces in a
single execution.

8.3 V&V of Model Transformations

There is a lot of available work on different approaches to the verification of different
model transformations, such as UML state machines to colored petri nets [60], UML
statecharts to Petri nets [73] or BPMN models to Petri nets [59], verifying properties,
such as termination and structural properties.
Varró and Pataricza [73] fully verify several properties, such as syntactic correctness and
completeness. For semantic correctness they give separate dynamic consistency properties,
as semantic equivalence between the models cannot always be proved.
These approaches concentrate on automatically checking properties, while this work con-
centrates on with the validation of informal semantics, which cannot be fully automated
due to the lack of formality. Chapter 3 explained why this lack of formal semantics is
typical for many models and thus this work can be viewed as a complementary extension
of the works mentioned above.

8.4 Conformance Testing of Different Tools and Compilers

Conformance testing is frequently used in practice. For example, the “Precise Semantics of
UML State Machines (PSSM)” specification [64] defines execution semantics for UML state
machines. It contains a conformance test suite containing state machines with execution
traces, both modeled by hand. Any given execution tool that wants to conform to this
specification must pass the conformance tests. Issues due to manual creation of traces
include typos, inconsistencies on completeness and unambiguity as well [38].
Test generation and conformance test suites are commonly used in the testing of com-
pilers [29]. Test generation most commonly builds on the grammar of the programming
language. However, ambiguous or non-deterministic executions are rarely tested.

69

8.5 Heuristics and Optimizations in CEGAR

High-Level Portfolios Many state of the art verifiers employ their own portfolios [12],
but there is existing work of even higher-level portfolios in the form of the CoVeriTeam
framework, which enables its user to create portfolios out of well-known verifiers [13],
raising portfolios above the level of the tools themselves. This trend of portfolios becoming
more and more important motivates my work, as stopping “hopeless” executions saves
CPU time for other tools and configurations.

Earlier Work in Theta One of the main traits of Theta is configurability. This is
maybe best shown in the paper “Efficient Strategies for CEGAR-Based Model Check-
ing” [49], which details and evaluates several CEGAR configurations and optimizations,
some of which were also used and played an important role in my evaluation in 7.

CPAChecker Besides their own portfolio including several algorithms, CPAChecker
also utilizes several interesting heuristics and optimizations: they include another, slightly
different version of lazy pruning, use BMC to double check results and so on [15]. The
tool itself includes even more heuristics, which I do not think are published anywhere, for
example besides time limits, counterexample limits are also often utilized and they also
try to get new refinements, if the first one they get is known. These are somewhat similar
to my techniques, although they are separate heuristics and the tool does not appear to
track counterexamples or stop the analysis with inconclusive results.

Ultimate Automizer [50][51] This software verification tool uses an automata-based
CEGAR-scheme. They use runtime algorithm selection techniques inside the refinement
algorithm, more precisely they are dynamically changing between several SMT solvers and
their configurations to create the “best” possible interpolants based on the ones created
in the earlier iterations. From my viewpoint, this is similar to mitigation techniques. It
would be worth considering doing something similar as an SMT solver based mitigation
technique after detection.

70

Chapter 9

Conclusion

9.1 Summary of Results

In this thesis I proposed two different extensions for the CEGAR algorithm. They serve
different purposes: trace generation is a tool for the validation of the tool to filter issues in
the model transformations, while the purpose of refinement progress monitoring is mainly
to improve performance. However, both serve to improve the usability and applicability
of model checking in practice.

Trace Generation Chapter 3 described the typical formal verification process and for-
mulated the main motivation of this work (“How can we trust formal verification tools?”).
In Chapter 4, I proposed an algorithm for generating execution traces with model check-
ers. Lastly, in Chapter 5 I implemented a prototype of the algorithms and the validation
process and designed two case studies.

Refinement Progress Monitoring Chapter 6 introduced in detail what causes lie be-
hind refinement progress issues in CEGAR. It also updated my earlier work on detection
and mitigation of these issues, while giving more detailed analysis of these techniques.
Chapter 7 introduced my implementation in Theta, formulated relevant research ques-
tions based on Chapter 6 and answered these through designing, executing and analysing
experiments on my implementation with verification benchmarks.
The other case study was created to investigate another use case of trace generation:
generating traces for real-world models to discover modeling mistakes. For this I took
some real-world models from earlier Gamma case studies and tutorials and checked what
insights the generated traces can give on these models.

9.2 Future Work

9.2.1 Trace Generation

Issues with ambiguity are also typical for software (e.g. undefined behaviour in C), so
execution trace generation might also be useful in software model checkers – however this
might require further research into the abstraction aspect of the algorithm as variables
play an even more prevalent role in software code.

71

Another interesting part to extend the trace generation algorithm itself would be to find
ways of employing other abstract domains (e.g. predicate abstraction) for trace generation.
This might prove useful if there are variables that cause state space explosion, but they
are important and should not be completely ignored. Predicate abstraction might offer a
solution, as it can represent predicates, e.g. statements about the possible values of the
variable in a more compact way.

9.2.2 Runtime Monitoring

The runtime detection of this work can be extended with further mitigation techniques.
Changing some parts of the CEGAR configuration dynamically during the analysis, such
as the solver [50] or abstract domains [19], is not unheard of and might prove interesting
to combine such methods with the detection technique of this work.
Combining detection with more portfolios is also an interesting topic. The first version
of detection and mitigation was already utilized in the portfolio added to Theta in my
earlier work [1], but this was based on an empirical approach. Further benchmarks and
updating the portfolio, especially including features Theta was updated with since then,
e.g. the ability to verify multithreaded programs, might prove even more interesting.

Acknowledgment Supported by the ÚNKP-22-2-I-BME-205 New National Excel-
lence Program of the Ministry for Culture and Innovation from the source of the National
Research, Development and Innovation Fund.

72

Bibliography

[1] Zsófia Ádám. Efficient techniques for formal verification of C programs. Master’s
thesis, Budapest University of Technology and Economics, 2021.

[2] Zsófia Ádám and Zoltán Micskei. Abstraction-based trace generation to validate
semantics of formal verifiers: Validation model suite, 2022. URL https://zenodo.
org/record/7263707.

[3] Zsófia Ádám, Gyula Sallai, and Ákos Hajdu. Gazer-Theta: LLVM-based Verifier
Portfolio with BMC/CEGAR (Competition Contribution). In Jan Friso Groote and
Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 433–437, Cham, 2021. Springer International Publishing.

[4] Zsófia Ádám, Levente Bajczi, Mihály Dobos-Kovács, Ákos Hajdu, and Vince Molnár.
Theta: portfolio of cegar-based analyses with dynamic algorithm selection (com-
petition contribution). In Tools and Algorithms for the Construction and Analysis
of Systems, volume 13244 of LNCS, pages 474–478. Springer, Cham, 2022. DOI:
10.1007/978-3-030-99527-0_34.

[5] Sven Apel, Dirk Beyer, Karlheinz Friedberger, Franco Raimondi, and Alexander von
Rhein. Domain Types: Abstract-Domain Selection Based on Variable Usage. In Hard-
ware and Software: Verification and Testing, pages 262–278. Springer International
Publishing, 2013. DOI: 10.1007/978-3-319-03077-7_18.

[6] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008. ISBN 978-0-262-02649-9.

[7] Levente Bajczi, Zsófia Ádám, and Vince Molnár. C for yourself: Comparison of
front-end techniques for formal verification. In 2022 IEEE/ACM 10th Interna-
tional Conference on Formal Methods in Software Engineering. IEEE, 2022. DOI:
10.1145/3524482.3527646.

[8] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian
abstraction for model checking c programs. In Tiziana Margaria and Wang Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 268–283,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45319-2.

[9] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian
abstraction for model checking c programs. In Tiziana Margaria and Wang Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 268–283,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45319-2.

[10] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model
Checking, pages 305–343. Springer, 2018. DOI: 10.1007/978-3-319-10575-8_11.

73

https://zenodo.org/record/7263707
https://zenodo.org/record/7263707
http://dx.doi.org/10.1007/978-3-030-99527-0_34
http://dx.doi.org/10.1007/978-3-319-03077-7_18
http://dx.doi.org/10.1145/3524482.3527646
http://dx.doi.org/10.1007/978-3-319-10575-8_11

[11] Dirk Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021). In
Tools and Algorithms for the Construction and Analysis of Systems, pages 401–422.
Springer International Publishing, 2021. DOI: 10.1007/978-3-030-72013-1_24.

[12] Dirk Beyer. Progress on software verification: SV-COMP 2022. In Dana Fisman
and Grigore Rosu, editors, Tools and Algorithms for the Construction and Analysis
of Systems, pages 375–402, Cham, 2022. Springer International Publishing.

[13] Dirk Beyer and Sudeep Kanav. Coveriteam: On-demand composition of cooperative
verification systems. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 561–579, Cham, 2022. Springer
International Publishing. ISBN 978-3-030-99524-9.

[14] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification, pages 184–190, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[15] Dirk Beyer and Stefan Löwe. Explicit-value analysis based on CEGAR and interpo-
lation. CoRR, abs/1212.6542, 2012. URL http://arxiv.org/abs/1212.6542.

[16] Dirk Beyer and Stefan Löwe. Explicit-State Software Model Checking Based on CE-
GAR and Interpolation. In Fundamental Approaches to Software Engineering, pages
146–162. Springer Berlin Heidelberg, 2013. DOI: 10.1007/978-3-642-37057-1_11.

[17] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker Blast. STTT, 9(5-6):505–525, 2007. DOI:
10.1007/s10009-007-0044-z.

[18] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program analysis.
In Werner Damm and Holger Hermanns, editors, Computer Aided Verification, pages
504–518, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73368-
3.

[19] Dirk Beyer, Thomas A. Henzinger, and Gregory Theoduloz. Program analysis with
dynamic precision adjustment. In 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, pages 29–38, 2008. DOI: 10.1109/ASE.2008.13.

[20] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Refinement selection. In Bernd
Fischer and Jaco Geldenhuys, editors, Model Checking Software, pages 20–38, Cham,
2015. Springer International Publishing. ISBN 978-3-319-23404-5.

[21] Dirk Beyer, Matthias Dangl, Daniel Dietsch, and Matthias Heizmann. Correctness
witnesses: Exchanging verification results between verifiers. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE 2016, page 326–337, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450342186. DOI: 10.1145/2950290.2950351. URL
https://doi.org/10.1145/2950290.2950351.

[22] Dirk Beyer, Matthias Dangl, Daniel Dietsch, and Matthias Heizmann. Correctness
witnesses: Exchanging verification results between verifiers. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE 2016, page 326–337, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450342186. DOI: 10.1145/2950290.2950351. URL
https://doi.org/10.1145/2950290.2950351.

74

http://dx.doi.org/10.1007/978-3-030-72013-1_24
http://arxiv.org/abs/1212.6542
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1109/ASE.2008.13
http://dx.doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351

[23] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: requirements
and solutions. International Journal on Software Tools for Technology Transfer, 21
(1):1–29, November 2017. DOI: 10.1007/s10009-017-0469-y. URL https://doi.
org/10.1007/s10009-017-0469-y.

[24] Dirk Beyer, Matthias Dangl, Thomas Lemberger, and Michael Tautschnig. Tests from
witnesses. In Catherine Dubois and Burkhart Wolff, editors, Tests and Proofs, pages
3–23, Cham, 2018. Springer International Publishing. ISBN 978-3-319-92994-1.

[25] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
Model Checking without BDDs. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 193–207. Springer Berlin Heidelberg, 1999. DOI:
10.1007/3-540-49059-0_14.

[26] Manfred Broy, Bengt Jonsson, J-P Katoen, Martin Leucker, and Alexander
Pretschner. Model-based testing of reactive systems. Springer Berlin Heidelberg, 2005.
DOI: 10.1007/b137241. URL https://doi.org/10.1007/b137241.

[27] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 States and beyond. Information and Computation, 98(2):142–170,
June 1992. DOI: 10.1016/0890-5401(92)90017-a.

[28] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The
nuxmv symbolic model checker. In Armin Biere and Roderick Bloem, editors, Com-
puter Aided Verification, pages 334–342, Cham, 2014. Springer International Publish-
ing. ISBN 978-3-319-08867-9.

[29] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao,
and Lu Zhang. A survey of compiler testing. ACM Comput. Surv., 53(1), feb
2020. ISSN 0360-0300. DOI: 10.1145/3363562. URL https://doi.org/10.1145/
3363562.

[30] Shengbo Chen, Hao Fu, and Huaikou Miao. Formal verification of security protocols
using Spin. In 2016 IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS), pages 1–6, 2016. DOI: 10.1109/ICIS.2016.7550830.

[31] P. Chevalley and P. Thevenod-Fosse. Automated generation of statistical test
cases from UML state diagrams. In 25th Annual International Computer Soft-
ware and Applications Conference. COMPSAC 2001, pages 205–214, 2001. DOI:
10.1109/CMPSAC.2001.960618.

[32] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal
of the ACM, 50(5):752–794, September 2003. DOI: 10.1145/876638.876643. URL
https://doi.org/10.1145/876638.876643.

[33] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
September 1994. DOI: 10.1145/186025.186051.

[34] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Hand-
book of Model Checking. Springer Publishing Company, Incorporated, 1st edition,
2018. ISBN 3319105744.

75

http://dx.doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
http://dx.doi.org/10.1016/0890-5401(92)90017-a
http://dx.doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
http://dx.doi.org/10.1109/ICIS.2016.7550830
http://dx.doi.org/10.1109/CMPSAC.2001.960618
http://dx.doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/186025.186051

[35] Tom Coffey, Reiner Dojen, and Tomas Flanagan. Formal verification: an imperative
step in the design of security protocols. Computer Networks, 43(5):601–618, 2003.
ISSN 1389-1286. DOI: https://doi.org/10.1016/S1389-1286(03)00292-5. URL
https://www.sciencedirect.com/science/article/pii/S1389128603002925.

[36] Matthias Dangl, Stefan Löwe, and Philipp Wendler. CPAchecker with Support for
Recursive Programs and Floating-Point Arithmetic. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 423–425, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN 978-3-
662-46681-0.

[37] Yulia Demyanova, Philipp Rümmer, and Florian Zuleger. Systematic predicate ab-
straction using variable roles. In Clark Barrett, Misty Davies, and Temesghen Kahsai,
editors, NASA Formal Methods, pages 265–281, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-57288-8.

[38] Márton Elekes, Vince Molnár, and Zoltán Micskei. Assessing the specification of
modelling language semantics: a study on UML PSSM. Software Quality Jour-
nal, March 2023. DOI: 10.1007/s11219-023-09617-5. URL https://doi.org/
10.1007/s11219-023-09617-5.

[39] André Engels, Loe Feijs, and Sjouke Mauw. Test generation for intelligent networks
using model checking. In Ed Brinksma, editor, Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 384–398, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg. ISBN 978-3-540-68519-7.

[40] Gordon Fraser, Franz Wotawa, and Paul Ammann. Issues in using model checkers for
test case generation. Journal of Systems and Software, 82(9):1403–1418, 2009. ISSN
0164-1212. DOI: 10.1016/j.jss.2009.05.016. SI: QSIC 2007.

[41] Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model
checkers: a survey. Softw Test Verif Rel, 19(3):215–261, 2009. DOI:
https://doi.org/10.1002/stvr.402.

[42] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide to SysML: the
systems modeling language. Morgan Kaufmann, 2014.

[43] Angelo Gargantini and Constance Heitmeyer. Using model checking to generate tests
from requirements specifications. In Oscar Nierstrasz and Michel Lemoine, editors,
Software Engineering — ESEC/FSE ’99, pages 146–162, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg. ISBN 978-3-540-48166-9.

[44] Vahid Garousi, Michael Felderer, Çağrı Murat Karapıçak, and Uğur Yılmaz. Testing
embedded software: A survey of the literature. Information and Software Technology,
104:14–45, 2018. DOI: 10.1016/j.infsof.2018.06.016.

[45] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In
Computer Aided Verification, pages 72–83. Springer Berlin Heidelberg, 1997. DOI:
10.1007/3-540-63166-6_10.

[46] Bence Graics, Vince Molnár, and István Majzik. Integration test generation for state-
based components in the gamma framework. Under review.

[47] Orna Grumberg, Doron A Peled, and EM Clarke. Model checking. MIT press Cam-
bridge, 1999. ISBN 978-0-262-03883-6.

76

http://dx.doi.org/https://doi.org/10.1016/S1389-1286(03)00292-5
https://www.sciencedirect.com/science/article/pii/S1389128603002925
http://dx.doi.org/10.1007/s11219-023-09617-5
https://doi.org/10.1007/s11219-023-09617-5
https://doi.org/10.1007/s11219-023-09617-5
http://dx.doi.org/10.1016/j.jss.2009.05.016
http://dx.doi.org/https://doi.org/10.1002/stvr.402
http://dx.doi.org/10.1016/j.infsof.2018.06.016
http://dx.doi.org/10.1007/3-540-63166-6_10

[48] Havva Gülay Gürbüz and Bedir Tekinerdogan. Model-based testing for software
safety: a systematic mapping study. Softw. Qual. J., 26(4):1327–1372, 2018. DOI:
10.1007/s11219-017-9386-2.

[49] Ákos Hajdu and Zoltán Micskei. Efficient Strategies for CEGAR-Based Model Check-
ing. Journal of Automated Reasoning, 64(6):1051–1091, November 2019. DOI:
10.1007/s10817-019-09535-x.

[50] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software Model Check-
ing for People Who Love Automata. In Computer Aided Verification, pages 36–52.
Springer Berlin Heidelberg, 2013.

[51] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen
Hoenicke, Yong Li, Alexander Nutz, Betim Musa, Christian Schilling, Tanja
Schindler, and Andreas Podelski. Ultimate Automizer and the Search for Perfect
Interpolants. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 447–451. Springer, 2018.

[52] ISO/IEC. Conformance testing methodology and framework, 1994. ISO/IEC 9646.

[53] John C. Knight. Safety critical systems: Challenges and directions. In Proceedings of
the 24th International Conference on Software Engineering, ICSE ’02, page 547–550,
New York, NY, USA, 2002. Association for Computing Machinery. ISBN 158113472X.
DOI: 10.1145/581339.581406. URL https://doi.org/10.1145/581339.581406.

[54] F. Kordon, P. Bouvier, H. Garavel, L. M. Hillah, F. Hulin-Hubard, N. Amat.,
E. Amparore, B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, , S. Dal Zilio, P.
G. Jensen, C. He, D. Le Botlan, S. Li, , J. Srba, . Thierry-Mieg, A. Walner, and
K. Wolf. Complete Results for the 2020 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2021/results.php, June 2021.

[55] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997. DOI:
10.1007/s100090050010.

[56] Daniset González Lima, Rauĺ E. González Torres, and Pedro Mejía Alvarez. Auto-
matic test cases generation for C written programs using model checking. In 2021
International Conference on Computational Science and Computational Intelligence
(CSCI), pages 1944–1950, 2021. DOI: 10.1109/CSCI54926.2021.00361.

[57] Ignacio D. Lopez-Miguel, Jean-Charles Tournier, and Borja Fernandez Adiego.
Plcverif: Status of a formal verification tool for programmable logic controller. 2022.
DOI: 10.48550/ARXIV.2203.17253. URL https://arxiv.org/abs/2203.17253.

[58] Azad M. Madni and Michael Sievers. Model-based systems engineering: Motivation,
current status, and research opportunities. Systems Engineering, 21(3):172–190, 2018.
DOI: 10.1002/sys.21438.

[59] Said Meghzili, Allaoua Chaoui, Martin Strecker, and Elhillali Kerkouche. Transfor-
mation and validation of BPMN models to Petri nets models using GROOVE. In 2016
International Conference on Advanced Aspects of Software Engineering (ICAASE),
pages 22–29, 2016. DOI: 10.1109/ICAASE.2016.7843859.

[60] Said Meghzili, Allaoua Chaoui, Martin Strecker, and Elhillali Kerkouche. Verifica-
tion of model transformations using Isabelle/HOL and Scala. Information Systems
Frontiers, 21(1):45–65, May 2018. DOI: 10.1007/s10796-018-9860-9.

77

http://dx.doi.org/10.1007/s11219-017-9386-2
http://dx.doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1145/581339.581406
https://doi.org/10.1145/581339.581406
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/CSCI54926.2021.00361
http://dx.doi.org/10.48550/ARXIV.2203.17253
https://arxiv.org/abs/2203.17253
http://dx.doi.org/10.1002/sys.21438
http://dx.doi.org/10.1109/ICAASE.2016.7843859
http://dx.doi.org/10.1007/s10796-018-9860-9

[61] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma statechart composition framework: design, verification and code generation
for component-based reactive systems. In ICSE: Companion Proc., pages 113–116.
ACM, 2018. DOI: 10.1145/3183440.3183489.

[62] Milán Mondok. Formal verification of engineering models via extended symbolic
transition systems, 2020. Bachelor’s Thesis, Budapest University of Technology and
Economics.

[63] Jeff Offutt and Aynur Abdurazik. Generating tests from UML specifications. In
Robert France and Bernhard Rumpe, editors, «UML»’99 — The Unified Modeling
Language, pages 416–429, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[64] OMG. Precise Semantics of UML State Machines (PSSM), 2019.

[65] OMG. Semantics of a Foundational Subset for Executable UML Models, 2021.

[66] Mathias Preiner, Armin Biere, and Nils Froleyks. Hardware model checking compe-
tition 2020. 2020. website: http://fmv.jku.at/hwmcc20/.

[67] Karsten Schmidt. Lola a low level analyser. In Mogens Nielsen and Dan Simpson,
editors, Application and Theory of Petri Nets 2000, pages 465–474, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg. ISBN 978-3-540-44988-1.

[68] Ting Su, Ke Wu, Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhendong
Su. A survey on data-flow testing. ACM Comput. Surv., 50(1), mar 2017. ISSN
0360-0300. DOI: 10.1145/3020266. URL https://doi.org/10.1145/3020266.

[69] Tamas Toth, Akos Hajdu, Andras Voros, Zoltan Micskei, and Istvan Majzik. Theta:
A framework for abstraction refinement-based model checking. In FMCAD. IEEE,
2017. DOI: 10.23919/fmcad.2017.8102257.

[70] Varun Tulsian, Aditya Kanade, Rahul Kumar, Akash Lal, and Aditya V. Nori. MUX:
algorithm selection for software model checkers. In Proceedings of the 11th Working
Conference on Mining Software Repositories - MSR 2014. ACM Press, 2014. DOI:
10.1145/2597073.2597080.

[71] Alan Mathison Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Journal of Math, 58:345–363, 1936.

[72] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.
Elsevier, 2010.

[73] Dániel Varró and András Pataricza. Automated formal verification of model trans-
formations. In Critical Systems Development with UML - Proceedings of the UML’03
workshop, page 63, 2003.

[74] Stephan Weißleder. Test models and coverage criteria for automatic model-based test
generation with UML state machines. PhD thesis, Humboldt University of Berlin,
2010.

[75] Karsten Wolf. Petri net model checking with LoLA 2. In Victor Khomenko and
Olivier H. Roux, editors, Application and Theory of Petri Nets and Concurrency,
pages 351–362, Cham, 2018. Springer International Publishing.

[76] Zsófia Ádám and Zoltán Micskei. Runtime monitoring of refinement progress in cegar-
based model checking: Dataset, Jun 2023.

78

http://dx.doi.org/10.1145/3183440.3183489
http://dx.doi.org/10.1145/3020266
https://doi.org/10.1145/3020266
http://dx.doi.org/10.23919/fmcad.2017.8102257
http://dx.doi.org/10.1145/2597073.2597080

Appendix

The following pages contain the real-world models introduced in Chapter 5, Section 5.4.3,
except the Ground Station model which was added directly to the chapter (Figure 5.11).

79

var batteryVariable: long = 100
var recharging: boolean = false
var data: long = 100
tim

eout rechargeTim
eout

tim
eout consum

eTim
eout

tim
eout transm

itTim
eout

Spacecraft

W
aitingPing

Transm
itting

Sending
entry / transm

itTim
eout := 1500 m

s

tim
eout transm

itTim
eout

[((data > 1) &
&

 (batteryVariable >= 40))] /
data := (data - 1)
connection.data()

Consum
ing

entry / consum
eTim

eout := 1 s

tim
eout consum

eTim
eout

[(batteryVariable >= 40)] /
batteryVariable := (batteryVariable - 1)

connection.ping
[(recharging == false)]

tim
eout consum

eTim
eout

[(batteryVariable < 40)]

tim
eout transm

itTim
eout

[((data <= 1) || (batteryVariable < 40))]

N
otRecharging

entry / recharging := false

Recharging
entry / recharging := true
entry / rechargeTim

eout := 10 s
tim

eout consum
eTim

eout
[(batteryVariable < 80)]

tim
eout rechargeTim

eout
[(batteryVariable < 100)] /

batteryVariable := (batteryVariable + 1)

tim
eout rechargeTim

eout
[(batteryVariable == 100)]

Figure A.0.1: Spacecraft model of the Simple Space Mission case study.

80

var c: boolean
var a: boolean
var asd: long
var b: long
timeout BlinkingYellowTimeout3
timeout BlackTimeout4

Interrupted

BlinkingYellow
entry / BlinkingYellowTimeout3 := 500 ms
entry / LightCommands.displayYellow()

Black
entry / BlackTimeout4 := 500 ms
entry / LightCommands.displayNone()

timeout BlackTimeout4timeout BlinkingYellowTimeout3

Normal
exit / asd := 321

H
Red

entry / LightCommands.displayRed()
exit / a := true

Yellow
entry / LightCommands.displayYellow()

Green
entry / LightCommands.displayGreen()

Control.toggle

Control.toggle

Control.toggle /
b := 4

PoliceInterrupt.policePoliceInterrupt.police

Figure A.0.2: Traffic Light model from the Crossroads tutorial models.

81

var RS_CO
ID

: CeloldasIdozites
var Release: boolean
var off

Count: long
var toggleCount: long
var tim

erSet: boolean

O
ldas_4

entry / StateM
achine_O

utPort.O
_CO

ID
(Activeness::ACTIVE)

entry / RS_CO
ID

 := CeloldasIdozites::CELO
LD

AS_ID
O

ZITES

Celoldas_idozites_fut_8
entry / StateM

achine_O
utPort.O

_CO
ID

(Activeness::PASSIVE)
entry / RS_CO

ID
 := CeloldasIdozites::CELO

LD
AS_ID

O
ZITES

entry / tim
erSet := true

Celoldas_idozites_nem
_fut_5

entry / StateM
achine_O

utPort.O
_CO

ID
(Activeness::PASSIVE)

Ervenytelen_0
entry / RS_CO

ID
 := CeloldasIdozites::N

ERV1

Idozites_nem
_fut_1

entry / RS_CO
ID

 := CeloldasIdozites::N
IN

CS_CELO
LD

AS_ID
O

ZITES

Tranziens_2
entry / RS_CO

ID
 := CeloldasIdozites::N

IN
CS_CELO

LD
AS_ID

O
ZITES

I_FT.e
[(I_FT.e::eValue == M

yBool::_0)]

T.tim
eout

I_FT.e
[(I_FT.e::eValue != M

yBool::_0)]

I_FT.e
[(I_FT.e::eValue == M

yBool::_0)]

I_FT.e
[(I_FT.e::eValue != M

yBool::_0)]

Funkcio_kikapcsolva_6
entry / RS_CO

ID
 := CeloldasIdozites::N

IN
CS_CELO

LD
AS_ID

O
ZITES

entry / off
Count := (off

Count + 1)

O
ff

Counter
I.toggle /

toggleCount := (toggleCount + 1)

(T.tim
eout &

&
(I_CR.f &

&
I_FT.f))

[((I_CR.f::fValue == M
yBool::_1) &

&
 (I_FT.f::fValue == M

yBool::_1))]

(I_CR.f ||
I_FT.f)

[((I_CR.f::fValue != M
yBool::_1) || (I_FT.f::fValue != M

yBool::_1))] /
Release := true

(I_CR.f &
&

I_FT.f)
[((I_CR.f::fValue == M

yBool::_1) &
&

 (I_FT.f::fValue == M
yBool::_1))]

(I_CR.f ||
I_FT.f)

[((I_CR.f::fValue != M
yBool::_1) || (I_FT.f::fValue != M

yBool::_1))]
I.toggle

T.tim
eout

Figure A.0.3: Signaller model of the Railway Traffic Control System case study.
82

	Kivonat
	Abstract
	Introduction
	Background
	Verification of Critical Embedded Systems
	Formal Verification and Model Checking
	Abstraction in Model Checking
	Abstract Domains
	ARG
	Traces
	Pruning back the ARG

	The Models throughout Model Checking in Practice

	I Abstraction-based Trace Generation to Validate Semantics in Formal Verifiers
	Validating Semantics of Verifiers
	Formal Verification Process
	Problem Statement
	Challenges of Semantics in Model Transformation
	Example of Ambiguous Semantics

	An Approach to E2E Validation of the Verification Process
	Another Use Case: Mitigating Modeling Mistakes

	Abstraction-based Trace Generation Algorithm
	Prerequisites of the Trace Generation Algorithm
	Abstraction Capabilities

	Generating Traces without Abstraction
	Trace Generation without Abstraction Example

	Utilizing Abstraction
	Inappropriate Abstraction Level
	Trace Generation with Abstraction Example

	Analysis of the Proposed Algorithm
	Coverage Guarantees
	Coverage on the ARG level
	Typical Coverages for Engineering Models

	Usability and Feasibility for Validation
	Examples of Tools with the Necessary Prerequisites

	Evaluation
	Prototype Implementation
	Gamma and Theta
	Process and Implementation
	High Level View of the Process
	Implementing Abstraction-based Trace Generation in Theta
	XSTS Specific Additions

	Evaluation Design
	Research Questions
	Process and Goal of the Evaluation
	End-to-End Validation
	Real-World Models

	Designing a Validation Modeling Suite for Gamma
	Understanding Gamma Models and Traces

	Results of the Case Studies
	RQ1: Quantitative Analysis of the Models and Traces
	RQ2: Validation Findings
	Missing Default Values in XSTS
	Order of Operations inbetween Stable State Configurations
	Limitation of Parallel Executions
	Visualizing Transitions Crossing Composite states with Orthogonal Regions

	RQ3: Traces of Real-World Models

	Discussion

	II Runtime Monitoring of Refinement Progress in CEGAR-based Model Checking
	Monitoring Refinement Progress in CEGAR
	Hardships in Model Checking
	Problem Statement
	Assumptions about the CEGAR loop
	Refinement Progress Issues

	Improved Detection and Mitigation
	Detection
	Analysis

	Mitigation
	Issues with Infeasible Traces

	Comparison of Runtime Monitoring Techniques on Software Benchmarks
	Experiment Design
	Implementation
	Input Models
	Research Questions
	CEGAR Configurations
	Execution Environment

	Results
	Data Preprocessing
	RQ1 - Explicit Analysis
	Detection for Explicit Value Analysis
	Mitigation for Explicit Value Analysis
	Differences in Execution Time

	RQ2 - Predicate Analysis
	RQ3 - Tracking ARGs

	Conclusion
	Threats to Validity

	III Related Work and Conclusion
	Related Work
	The Landscape of Verification Tools
	Test Generation with Model Checkers
	V&V of Model Transformations
	Conformance Testing of Different Tools and Compilers
	Heuristics and Optimizations in CEGAR

	Conclusion
	Summary of Results
	Future Work
	Trace Generation
	Runtime Monitoring

	Bibliography
	Appendix

